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ABSTRACT

We propose a family of cutset sampling schemes and a gener-

alized k-level image reconstruction approach formulated un-

der a minimum mean squared error (MMSE) framework. The

k-level reconstruction approach is a direct generalization of

the recently proposed pattern-based approach, and can be ap-

plied to periodic samples either on a cutset or on a grid. Our

experimental results indicate that the generalization of the k-

level reconstruction approach results in only a small perfor-

mance loss. For rectangular cutsets, we show that the pro-

posed approach outperforms the cutset-MRF approach as well

as two inpainting approaches. Moreover, we show that com-

bining the cutset sampling with an additional point sample in-

side the periodic structure outperforms k-level reconstruction

from cutset sampling and point sampling under comparable

sampling densities.

Index Terms— cutset, sampling, reconstruction

1. INTRODUCTION

The term cutset was defined in terms of a graphical model

in the context of bilevel image compression [1, 2, 3, 4],

and formed the basis for k-level image reconstruction [5],

grayscale image reconstruction [3, 6, 7], and energy op-

timization in sensor networks [8, 9]. A cutset typically

samples a two-dimensional field on rows and columns of

a Cartesian grid (Figure 1 left panel). Cutset sampling results

from physical constraints on data acquisition, where sensor

deployment is restricted to narrow strips (e.g., city streets)

or sensor movement is confined in pre-specified routes (e.g.,

taking water samples along the path of a ship).

Cutset sampling and reconstruction was first proposed for

bilevel image reconstruction from a rectangular cutset based

on a Markov random field (MRF) model; we refer to this

as the cutset-MRF approach [1]. A hierarchical version of

the cutset-MRF approach was proposed in [4]. The recon-

struction of grayscale images from cutsets was considered in

[6], which utilized a k-level reconstruction as an intermediate

step, and in [7], which was based on an orthogonal gradient

method. As an intermediate step for grayscale reconstruction,

or as a reconstruction of image segments which are an inter-

mediate step for semantic information extraction, k-level re-

construction is important on its own. A pattern-based k-level

Fig. 1. Left: cutset (blue) on 2D Cartesian grid. Middle:

hexagonal cutset. Right: hexagonal structure.

cutset reconstruction approach was proposed in [5], and was

shown to outperform the cutset-MRF approach and several in-

painting approaches, which are closely related because their

goal is to fill in a missing region of an image. Most inpainting

methods, such as [10, 11], focus on reconstructing missing

regions of grayscale or color images. On the other hand, the

k-level image reconstruction aims at reconstructing regional

information or segments. The main challenge in cutset recon-

struction is that a limited number of samples is available. In

particular, the cutsets include one-pixel-wide lines of an im-

age, as opposed to inpainting approaches, which typically aim

at filling in gaps of otherwise dense image samples.

Previous work on cutset sampling assumes was restricted

to rectangular cutsets. Little attention was given to more gen-

eralized cutsets. In this paper, we propose a family of gen-

eralized cutset sampling schemes and a generalized k-level

image reconstruction approach that allow arbitrary periodic

sampling regardless of the position and connectivity of sam-

ples. The main contributions include (i) a family of general-

ized cutset sampling schemes; (ii) a sampling technique that

combines cutset sampling and point sampling, which provides

additional information for reconstruction; and (iii) a MMSE

approach for k-level cutset reconstruction that is suitable for

arbitrary periodic sampling schemes.

The structure of this paper is as follows. Section 2 reviews

related work. Section 3 presents generalized cutset sampling.

Section 4 presents the MMSE framework and an algorithm

for k-level image reconstruction. Section 5 demonstrates ex-

perimental results. Section 6 summarizes this paper.

2. RELATED WORK

Cutset sampling was first proposed in the cutset-MRF ap-

proach [1], where the samples were obtained densely on ev-
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ery N -th row and column of a 2D Cartesian grid. It was then

extended to a hierarchical scheme that recursively subdivides

the cutset into finer grids depending on image content [4].

In the cutset-MRF approach, a Markov random field (MRF)

model is used to reconstruct bilevel images from rectangular

cutsets [1]. The rectangular cutset is reconstructed block by

block, where the block boundaries (cutset samples) are shared

by adjacent blocks. Based on the properties of MRF, the op-

timal reconstruction of the interior of a cutset block can be

obtained independently from each block.

A pattern-based approach to reconstruct k-level images

from rectangular cutsets was proposed in [5]. It learns and

utilizes the statistics from a dataset of k-level images, and has

shown superior performance over the previous approaches.

The algorithm consists of (i) the creation of a cutset pat-

tern database; (ii) block-by-block reconstruction based on

fuzzy retrieval of block boundary patterns; and (iii) a post-

processing step that iteratively reduces local MRF energy

given the initial reconstruction. A unique cutset pattern con-

sists of a boundary pattern and a block interior pattern. The

interior pattern is obtained as the average of a collection

of patterns that have the same boundary. Thus, each unique

boundary pattern is associated with one block interior pattern.

The boundary pattern is represented as runs of consecutive

pixels with value in the set {0, 1, . . . ,K − 1}, and is further

normalized to obtain a more compact representation. The

specific properties of rectangular cutsets are utilized to obtain

concise representations.

3. GENERALIZED CUTSET SAMPLING

Given an undirected connected graph G = (V,E) comprising

a set of vertices (nodes) V and a set of edges E, a cutset Gc is

defined as a subgraph of G such that, when it is removed from

G, it separates G into disconnected subgraphs. The cutset

nodes (sampled nodes) enclose the unsampled nodes.

When embedded into a 2D Cartesian lattice, the rectan-

gular cutset is formed by periodically sampling the rows and

columns as shown in Figure 1, left panel. For a 2D Cartesian

lattice, uniform sampling is the counterpart of rectangular cut-

set sampling. Their sampling densities are given by du = 1

N2
u

and dc =
2Nc−1

N2
c

, where Nu and Nc denote the uniform sam-

pling step and the rectangular cutset sampling step, respec-

tively. The sampling densities equalwhen Nu =
√

N2
c

2Nc−1
.

Hexagonal sampling is an alternative pixel tessellation of

images that is more efficient than Cartesian sampling [12].

The natural cutsets one can define on a hexagonal lattice are

shown in the middle panel of Figure 1. The uniform sampling

counterpart on a hexagonal lattice is shown in the right panel

of Figure 1. However, when the underlying dense image field

is given on a Cartesian grid, obtaining the hexagonal uniform

and cutset samples is not a trivial problem. Hexagonal uni-

form (sparse) sampling is often approximated by shifting the

square pixels by a half pixel width [12]. Hexagonal cutset

sampling can be approximated by rounding the locations of

the samples to the nearest integer. Examples of actual uni-

form and cutset hexagonal sampling are shown in Figure 2. A

generic cutset can be embedded with other topologies, such

as triangles and randomly positioned lines and curves.

The main advantages of the cutset sampling are (i) the

cutset nodes are connected in lines or curves, which reduces

energy cost and transmission distance in cutset sensor net-

works [8, 9]; and (ii) the cutset nodes separate the cutset into

disjoint subgraphs, each of which can be processed indepen-

dently of the other subgraphs. The structure of the subgraphs

is typically identical such that the overall topology of the cut-

set is periodic. Examples include triangular, rectangular, and

hexagonal cutsets.

The main challenge of recovering unsampled nodes from

the cutset is that the distance between non-neighboring nodes

in cutsets could be relatively large as compared to conven-

tional point sampling. To address this issue, we propose a

mixture of cutset sampling and conventional sampling by tak-

ing an additional point sample at the center of each periodic

structure, such that the cutset property of separation and en-

closure is unchanged while the distance between the non-

neighboring nodes is reduced by half.

4. GENERALIZED CUTSET RECONSTRUCTION

In periodic cutset sampling, the cutset can be subdivided into

regions of interests (ROIs) with identical structure. Each ROI

consists of the boundary and its interior. For example, the

ROIs of rectangular cutsets sampled on Cartesian grid with

sampling step N are (N + 1) × (N + 1) blocks, consist of

4N cutset nodes on the block boundary enclosing (N − 1)×
(N − 1) unsampled nodes; the ROIs of hexagonal cutsets are

hexagonal regions consisting of the hexagonal region bound-

ary and its interior unsampled nodes. Let B ∈ [0,K)m and

X ∈ [0,K)n denote the sample nodes and the region to be re-

constructed (unsampled nodes) in the ROI, respectively, and

Y ∈ [0,K)m+n = X ∪ B denotes the entire ROI, where

K,m and n denote the number of levels, the number of sam-

pled nodes and the number of samples to be reconstructed.

Given a cutset ROI dataset S, the distinct patterns in the ROIs

are indexed as Yi, where Yi = Xi ∪ Bi. Given the obser-

vations of Yi ∈ So, a subset of S, the objective is to find

an estimator X̂(B) such that the mean squared error of the

estimate is minimized,

argmin MSE(X̂(B)) = minE[(X̂−X)2] (1)

which yields the minimum mean squared error (MMSE) esti-

mator

X̂(B) = E[X|B] =
∑

i∈S

Xif(Xi|Bi) ≈
∑

i∈So

Xif(Xi|Bi)

(2)
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where f denotes the frequency. The estimate of the hidden

pattern X̂ given the cutset specification B reduces to the av-

erage of ROIs associated with unique cutset specifications

based on the observations. When the observed subset is rep-

resentative of the pattern population, the collected statistics

can be used as the solution to the MMSE.

The pattern-based k-level cutset reconstruction algorithm

proposed in [5] is a realization of the MMSE approach de-

signed specifically for square cutsets sampled on 2D Carte-

sian lattices. Here, we propose a variant of the pattern-based

algorithm that can reconstruct any periodically sampled k-

level image. The proposed algorithm consists of three phases:

(i) the construction of cutset ROI pattern database based on

the observation of Yi = Xi ∪ Bi ∈ So; (ii) the fuzzy sum-

marization of the cutset ROI patterns; and (iii) the retrieval of

fuzzy patterns. The representation of the (Xi,Bi) pair dif-

fers from that of [5] in that the conversion from the raw levels

to the normalized levels does not depend on the position of

the runs. Yet, it maps the distinct the raw levels to a consec-

utively numbered levels, starting from the first sample. The

samples are ordered by their relative distances. Rotation is not

required in consideration of non-symmetric cutset ROIs. The

proposed reconstruction algorithm is capable of reconstruct-

ing any k-level regions given periodic samples from both cut-

set sampling and point sampling.

5. EXPERIMENTAL RESULTS

We illustrate our results on three datasets: (i) the k-level

images obtained from human segmentations of natural im-

ages in BSDS500 [13]; (ii) the Brown bilevel image shape

dataset (5578 images) [14]; and (iii) an in-house bilevel im-

age dataset of 13 relatively complicated bilevel images. We

used the training part of BSDS500 to construct the cutset ROI

database. The test set of BSDS500 along with the other two

datasets was used for the testing the k-level reconstruction

algorithms.

Sampling: Figure 2 illustrates several typical sampling

schemes, including point sampling, cutset sampling, and their

combination. The sampling step N and radius R are chosen

to yield comparable sampling densities and ROI sizes. Table

1 lists the parameters and the actual densities (discretized in

the case of hexagonal sampling). In the rectangular cutset, the

number of cutset samples is smaller than that of the nodes to

be reconstructed when N ≥ 6. We found that N = 8 is the

most efficient for rectangular cutsets.

ROI: Examples of the fuzzy summarized patterns in the

database are shown in Figure 3. Same ROIs are applied to

cutset sampling and corresponding point sampling. The fig-

ure shows that point sampling is advantageous in keeping the

coarse patterns, particularly when the number of samples are

limited, while cutset sampling is better in capturing level par-

tition details near the cutset samples. The mixture of cutset

sampling and point sampling keeps both the structural infor-

Table 1. Sampling parameter and density

N (2R) random uniform
cutset

rect.

cutset

rect. + pt

cutset

hex.

cutset

hex. + pt

8 (8) .25 .25 .23 0.25 .27 .29
18 (16) .11 .11 .11 .11 .11 .11

Fig. 3. Samples (top) and reconstructions (bottom). Black:

unsampled nodes or non-ROI.

mation and the details, and reduces the ambiguity when mul-

tiple patterns are equally likely.

Visual Results: The reconstruction for several typical

sampling schemes, including periodic random sampling, uni-

form sampling, rectangular cutset sampling (with additional

center sample), and hexagonal sampling (with additional cen-

ter sample), is illustrated in Figure 4. The proposed algorithm

is general enough to handle other periodic sampling topolo-

gies as well. The corresponding sampling density and the

average reconstruction error rate are given in Tables 1 and 2,

with comparable sampling densities and ROIs. The results

show that the structural information is preserved in the recon-

struction of point sampling as well as cutset sampling under

reasonable sampling steps. They also show that the recon-

struction of cutset sampling is more piecewise smooth when

compared to that of point sampling. For example, the sam-

pling density of random point sampling, uniform sampling,

and rectangular cutset sampling with an additional sample at

the center are identical, while the rectangular cutset sampling

has slightly lower sampling density. However, the cutset re-

constructions have smoother segment contours.

Reconstruction Error: The average reconstruction error

rates obtained in three datasets are given in Table 2. Note that

the pixels in the k-level images are region labels rather than

values, thus the reconstruction error for each pixel is 0 if it

matches the ground truth and 1 otherwise. The comparison of

the proposed reconstruction approach against the inpainting

approaches, the cutset-MRF approach, and the pattern-based

approach for square cutsets, are shown in Table 3. The com-

parison of the proposed reconstruction approach against the

one in [5] under the same cutset specification shows that there

is only little loss in terms of reconstruction error rate by gener-

alizing the reconstruction algorithm. Yet, it still outperforms

the cutset-MRF approach and two inpainting approaches. The

generalized reconstruction approach enables reconstruction

from general periodic cutset sampling as well as point sam-
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original random uniform cutset rect. cutset rect. pt. hex. cutset hex. cutset hex. pt.

Fig. 2. Sampling. N = 2R = 8

groundtruth random uniform cutset rect. cutset rect. pt. cutset hex. cutset hex. pt.

Fig. 4. Reconstruction from different sampling schemes. N = 2R = 8

Table 2. Average reconstruction error rate with various sam-

pling schemes. N = 2R = 8

Dataset rand. unif.
cutset

rect.

cutset

rect. pt

cutset

hex.

cutset

hex. pt

k-level [13] .008 .007 .007 .006 .006 .005

bilevel [14] .015 .013 .016 .013 .011 .009

our bilevel .019 .016 .018 .014 .014 .011

pling, including both symmetric sampling topology, such as

uniform sampling and hexagonal cutset sampling, and ran-

dom sampling. The symmetric property is not utilized in the

generalized k-level reconstruction approach for fair compari-

son among different sampling schemes. We believe that fully

exploiting the specific pattern symmetries in each of the sam-

pling schemes could further improve the result. Our results

also shown that sampling an additional point at the center of

the periodic cutset structure is efficient in reducing the recon-

struction error, outperforming either point sampling or cutset

sampling alone.

Table 3. Comparison against other approaches in average re-

construction error rate of rectangular cutset N = 8

Dataset [10] [11] [1] [5] proposed

k-level dataset [13] .017 .025 - .007 .007
bilevel dataset [14] .032 .029 .018 .015 .016
our bilevel dataset .038 .035 .027 .017 .018

6. CONCLUSION

We proposed a family of generalized cutset sampling schemes

and a MMSE framework for reconstructing k-level images.

The k-level reconstruction approach can be applied to arbi-

trary periodic sampling schemes, including both cutset sam-

pling and point sampling. We have shown that it outperforms

the cutset-MRF approach and two inpainting approaches in

k-level cutset reconstruction. The comparison of cutset sam-

pling and point sampling demonstrates the strength of cutsets

in capturing fine-grained structure. Moreover, sampling an

additional point at the center of the periodic cutset samples

improves the reconstruction.
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