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ABSTRACT

In this paper, we propose a fast and dictionary-free
example-based super-resolution (EBSR) algorithm to solve
the contradiction in EBSR methods of their high performance
in achieving high visual quality and their low efficiency and
high costs. With a novel cross-scale high-frequency com-
ponents (HFC) self-learning strategy, the missed HFC of a
high-resolution (HR) image are approximated from its low-
resolution counterparts. A high-quality estimation of the
HR image is thus obtained by compensating the HFC to its
initial guess. Simulations show that the proposed algorithm
gets comparable results to the state-of-the-art EBSR but with
much higher efficiency and lower costs.

Index Terms— Image super-resolution, image upsam-
pling, image quality, self-learning, self-similarity

1. INTRODUCTION

Image super-resolution (SR) techniques have been exten-
sively researched in recent years. To a given low-resolution
(LR) image, the key to a successful SR processing is to re-
cover the high-frequency components (HFC) that are not
effectively recovered by upsampling in its high-resolution
(HR) counterpart. Interpolation methods cannot recover the
HFC and perform poorly in practice [1]. Modern SR tech-
niques recover the lost HFC with either reconstruction-based
(RB) or example-based (EB) strategies. The RBSR [2, 3, 4]
reconstructs a HR image from multiple LR images [1, 5]. But
they suffer from sub-pixel level registration errors, and the
high costs of iteration-based post-processing such as itera-
tive back-projection (IBP). The EBSR [6, 7, 8, 9] recovers
the lost HFC by representing the HFC with the priors of the
correspondence between the LR and HR HFC, e.g., neighbor
embedding [10] or sparse representation [6]. Although it
performs the best among all image upsampling methods, it is
iterative and computationally expensive, and not suitable for
commercial applications.

Efforts had been made recently to accelerate the EBSR. J.
C. Yang et. al. [11] adopt in-place example regression for fast
EBSR. But the method still needs off-line training and extra

storages for building its first-order regression model. R. Tim-
ofte et. al. [12, 13] relax the l0-norm constraint of the sparse
representation to l2-norm constraint and obtain a closed-form
solution of sparse representation via Ridge regression [14].
The HR HFC thus can be directly computed from the pre-
computed projection matrices. Their researches show that
the algorithm outperforms many popular EBSR algorithms in
both output visual quality and efficiency. However, it requires
huge resource to save the projection matrices and not efficient
enough for big-size image upsampling applications such as
full-HD (FHD) to UHD conversion. In this paper, we pro-
pose an efficient and dictionary-free EBSR algorithm that ob-
tains comparable high-quality HR images as the conventional
EBSR methods do but greatly improve the efficiency and the
feasibility for commercial broadcasting applications. Section
2 presents an overview of the proposed algorithm. Section 3
describes the details of the proposed algorithm. Experimental
results and evaluations are given in Section 4. Finally, Section
5 concludes this paper.

2. OVERVIEW

Let Ik be an image in scale k with the scaling factor s, where
s = 2k. Knowing that real-world images have great content
redundancy in different scales [15], the basic idea of the pro-
posed algorithm is to recover the lost HFC of Ik from its lower
scales. In this paper, we focus our discussions on the market
urgently needed FHD to UHD conversion problem, i.e., es-
timating a HR image I1 from the LR image I0 with s = 2.
Figure 1 shows the flow diagram of the proposed algorithm.
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Fig. 1. The flow diagram of the proposed EBSR algorithm.

As shown in Fig.1, the initial guess of I1, denoted Ĩ1, and
the lower-scale images {Ik|k < 0} are firstly computed from
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I0. Then the HFC that may not be recovered in each scale
by upsampling, as well as their initial guesses, are computed.
The third, an efficient cross-scale HFC learning is applied to
Ĩ1, {Ik|k ≤ 0}, and their corresponding HFC maps to form
the LR and the HR HFC correspondence. An estimation of
the HR HFC, denoted X̂1, is thus computed. Finally, an esti-
mation of I1 is generated by compensating X̂1 to Ĩ1. Section
3 presents the details of the proposed algorithm.

3. THE PROPOSED EB-SR ALGORITHM

In this section, we present the details of the proposed algo-
rithm. Sec. 3.1 models the proposed algorithm. Sec.3.2 gives
the details of the HFC computations as well as the proposed
cross-scale HFC self-learning strategy.

3.1. Solution Modeling

LetXk be the HFC map in the k-th scale that are not recovered
by image upsampling from scale (k−1), I1 can be represented
as a base layer that is lack of HFC and a detail layer that is
abundant in HFC [16]. The initial guess of I1, i.e., Ĩ1, is a
good candidate of the base layer of I1, namely,

I1 = Ĩ1 + X1. (1)

As shown in (1), a well estimated X1 will lead to a high-
quality estimation of I1. An initial guess of X1, denoted X̃1

can be conveniently obtained by interpolating the lost HFC
map in scale 0, i.e., X̃1 =↑2 [X0], where ↑2 [·] is the upsam-
pling operator with factor 2. Noting that interpolation does
not recover any new HFC, X̃1 is not suitable for estimating
the HR image I1. Inspired by Yang et. al.’s work [11], we
assume a projection function f(·) that projects a HFC patch
in the initial guess X̃k, denoted p̃k, to the real one pk in Xk.
With Taylor expansion, f(p̃k) can be expanded at its lower
scale counterpart p̃k−1 thus a HFC patch of X1, denoted p1,
can be represented as

p1 = f(p̃1) = f(p̃0) + f ′(p̃0)(p̃1 − p̃0) +O(·), (2)

where O(·) is the high-order residual. Note that the pro-
posed algorithm is different from Yang et. al.’s work [11]:
1) Yang et. al. expand the projection function at image con-
tents, the proposed method uses Taylor expansion to repre-
sent the HFC not recovered in upsampling; and 2) Yang et.
al. build the regression model by off-line training and save
the priors in dictionaries, the proposed algorithm, as shown
in Sec. 3.2, approximates f ′(·) based on the self-similarity
property of image contents, and it is dictionary-free. Consid-
ering f(p̃0) = p0, and omitting O(·), we get an estimation of
p1, denoted p̂1, as

p1 ≈ p̂1 = p0 + f ′(p̃0)(p̃1 − p̃0). (3)

In practice, it is very difficult to determine f(·). Based on
the content-redundancy between different scales of real-world

images, we propose to directly approximate f ′(p̃0) from scale
−1. Let B0 and B−1 be the most similar patches between I0
and I−1. It is highly probable that the HFC of B0 and B−1
are also similar. Let p−1 and p̃−1 be the corresponding HFC
patches in X−1 and its initial guess X̃−1, respectively, p0 can
be approximated with p̃0, p−1, and p̃−1 by (3) but between
scales 0 and −1. From (3), we have

f ′(p̃−1) ≈
p0 − p−1
p̃0 − p̃−1

. (4)

According to the self-similarity property of real-world con-
tents, it is reasonable that we estimate f ′(p̃0) from f ′(p̃−1).
Note that f ′(p̃−1) is approximated from scales 0 and −1, it
may have outliers that are caused by delicate detail loss due
to downsampling. Especially, in the case of strong but thin
structures such as fine grass or trees, (4) may lead to high
outliers. To further improve the robustness of the proposed
method to different contents, we restrict the value of f ′(·) to
be within an experimental determined range [Tl, Th], where
Tl < Th. Thus, we estimate f ′(p̃0) as

f ′(p̃0) =

 Tl : f ′(p̃−1) < Tl
f ′(p̃−1) : f ′(p̃−1) ∈ [Tl, Th]
Th : otherwise.

(5)

With (5), the proposed algorithm directly obtains f ′(p̃0) from
the given image thus need not any training or dictionaries.
This greatly increases the efficiency and decreases the costs.

3.2. HFC computation and HR image approximation

In this section, we compute the HFC maps that are necessary
to estimate I1 in Sec.3.1. Theoretically, X0 can be obtained
by subtracting ↑2 [I−1] from I0. But in such a way, X̃0 has to
be computed independently, and may not keep the high corre-
spondence to X0 due to the content loss in downsampling. To
solve the problem, we assume that I0 and Ĩ1 share the same
base image Ib0 but with different HFC, thus blur is included
in Ĩ0. In this paper, we compute Ib0 by further removing HFC
from Ĩ0 with a low-pass filter LPh(·). From (1), we have,{

X0 = I0 − Ib0
X̃0 = Ĩ0 − Ib0,

(6)

where Ib0 = LPh(Ĩ0).
Similarly, we can getX−1 and X̃−1 with Ib−1 = LPh(Ĩ−1),

where Ĩ−1 =↑2 [I−2]. However, loss in delicate structures
may be serious in scale −2 thus the obtained HFC may con-
tain considerable content differences instead of HFC changes.
To maintain the robustness of later HR image approximation,
we adopt double-filtering to compute Ib−1 to avoid applying
downsampling in scale -1, as shown in (7),

Ib−1 = LPt(LPh(I−1)), (7)
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where LPt(·) and LPh(·) are only different from their stan-
dard deviations. With (7), X−1 and X̃−1 are obtained simi-
larly as shown in (6) but with I−1, Ĩ−1, and Ib−1.

With (6) and (7), all items in (3) — (5) are known. Let
coordinates xk determines an image patch B(xk) in Ik. To
each B̃1(x1) of Ĩ1, we locate its first N best matched patches
{B0(x

n
0 )} in I0, where N is an integer, and n = 1, 2, · · · , N .

Thus, the N most similar HFC patches of p̃1(x1) in X0, as
well as their initial guess in X̃0, are located as {p0(xn

0 )} and
{p̃0(xn

0 )}, respectively. Similarly, to each p0(x
n
0 ), we can

locate its most similar HFC patch in X−1, namely p−1(xn
−1),

as well as its initial guess p̃−1(xn
−1) in X̃−1. From (3), we

estimate p̂1(x1) as

p̂1(x1) =
1

N

N∑
n=1

[p0(x
n
0 ) + βn(p̃1(x1)− p̃0(xn

0 ))], (8)

where βn is the f ′(·) estimated from the n-th corresponding
HFC patch pair between scale 0 and −1. From (4), we have

f ′(p̃−1(x
n
−1)) =

p0(x
n
0 )− p−1(xn

−1)

p̃0(xn
0 )− p̃−1(xn

−1)
, (9)

and βn is then determined by (5) and (9).

4. EXPERIMENTAL RESULTS AND EVALUATIONS

Performance evaluations are applied to the proposed algo-
rithm and 1) the bicubic interpolation [17] , which is still pop-
ular in commercial applications, 2) the fractal SR (F-SR) [18],
which is so far the fastest iteration-based SR referencing the
methods evaluated in [12, 13, 19], and 3) the Timofte’s EBSR
(T-EBSR) [13], which is one of the most efficient and state-
of-the art EBSR algorithms [13]. Note that we set the number
of iterations in F-SR to 6 to obtain comparable results, and
adopt the 1024-atom dictionaries in the T-EBSR provided by
the authors. The parameters of the proposed algorithm are
experimentally set as: the size of all patches as well as the
low-pass filter are 3 × 3; the search range of the cross-scale
patch matching is 5× 5; Tl and Th in (5) are set to −2.4 and
2.4, respectively; the standard deviations of LPh(·) and LPt·
used in (6) and (7) are set to 1.25 and 1.0, respectively; and
N is set to 2 in (8). All test algorithms are applied to the
Samsung static test image database, which contains over 90
images with different image contents. Note that the test im-
ages are independent to the images we used to determine the
parameters of the proposed algorithm. Figure 2 shows parts
of the test images that are discussed in this section.

Figure 3 shows the examples of the experimental results
of “Lenna”. As shown in Fig.3, the bicubic interpolation per-
forms poorly and introduces serious blur in the results. The
F-SR performs better but its results are still blurry. The T-
EBSR and the proposed algorithm perform well to different
contents. The proposed algorithm outperforms the T-EBSR in

(a) Lenna (512× 512) (b) Sibasku (1080× 1920)

(c) Fruits (1080× 1920) (d) Soup (1080× 1920)

Fig. 2. The given low-resolution test images.

edges and complex structures (row 1 - 2). It successfully re-
covers the HFC that are not recovered by upsampling and ob-
tain natural and sharp structures. The T-EBSR obtains more
details than the proposed algorithm in delicate textures (row 3
and 4). However, the method tends to generate jaggies along
edges. This is because that the HFC that the T-EBSR recov-
ered are in fact synthesized by the dictionary atoms, and the
atoms obtained by training may not always match complex
real-world contents well.

(a) bicubic (b) F-SR (c) T-EBSR (d) prop.

Fig. 3. Comparison with “Lenna”.

Figure 4 shows the examples of the experimental results
with the FHD test images, and the results confirms our obser-
vations in Fig.3. The bicubic interpolation cannot recover any
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HFC thus its results are all blurry. The F-SR clearly outper-
forms the bicubic interpolation. However, it does not recover
enough HFC thus its results still have perceivable blur. Also,
small distortions may be introduced along strong edges in the
F-SR results. Both the T-EBSR and the proposed algorithm
performs well in all tests, but they performs differently to dif-
ferent contents. As shown in row 1 and 2 (“Sibasku”) of Fig.4,
the proposed algorithm significantly outperforms the T-EBSR
by obtaining sharp and natural edges and complex structures.
The T-EBSR tends to introduce small distortions along strong
but thin structures. Row 3 and 4 of Fig.4 (“Fruits”) show an-
other example of the superior of the proposed algorithm in
HFC recovering around edges and delicate structures. Row 5
and 6 of Fig.4 (“Soup”) show the mixture of edges and fine
details. As can be seen, the proposed algorithm gets higher
quality edges than T-EBSR does, and T-EBSR recovers more
details than the proposed algorithm. But small distortions
along delicate structures can be seen in the T-EBSR’s results.

(a) bicubic (b) F-SR (c) T-EBSR (d) prop.

Fig. 4. Comparison with FHD test images (row 1 and 2:
“Sibasku”; row 3 and 4: “Fruit”; and row 5 and 6: “Soup”).

Implemented in C++ and under Linux OS, we apply the
proposed algorithm as well as the reference algorithms to 20
randomly selected FHD images (1080×1920) to obtain UHD
images (2160 × 3840). Table 1 shows the average time con-
suming of each of the algorithms. As shown in Table 1, the
Bicubic interpolation is the most efficient, and the F-SR is
the next most efficient, followed by the proposed, and the T-
EBSR methods. However, the bicubic and the F-SR methods
do not effectively recover the HFC that are not recovered by
upsampling. The proposed algorithm generates the compara-
ble results to the T-EBSR algorithm, and even the T-EBSR is
one of the most efficient EBSR methods, the proposed method
is about 7.7 times faster than it. More important, the proposed
algorithm is not iterative, and need not any training or dictio-
nary. It is more feasible to commercial applications.

Table 1. The efficiency of different SR algorithms (in sec.).
Bicubic Intp. F-SR T-EBSR Prop.

Time 0.4353 0.8663 58.9523 7.6998

5. CONCLUSION

An efficient and dictionary-free example-based super-resolution
(EBSR) algorithm is proposed for UHD broadcasting appli-
cations. With a novel cross-scale self-learning strategy, the
lost high-frequency components (HFC) of a high-resolution
(HR) image are estimated from its lower scales. A visually
pleased HR image estimation is thus obtained by compensate
the HFC to its initial guess. Due to the cross-scale HFC
self-learning, offline training and dictionaries, which are nec-
essary in many high-performance EBSR, are not required in
the proposed algorithm. Simulations show that the proposed
algorithm effectively recovers the HFC that are not effectively
recovered by upsampling thus obtains sharp and natural HR
estimations. Although it may slightly lose few details com-
paring to the state-of-the-art EBSR methods, the proposed
algorithm outperforms the EBSR in edges and complex struc-
tures, and does not introduce perceivable structure distortions
in delicate contents. Due to its non-iterative framework,
the proposed algorithm is hardware friendly, efficient, and
suitable for commercial applications.

This study shows that the computationally expensive con-
tent representation in EBSR can be replaced by much more
efficient cross-scale self-learning to obtain the correspon-
dence of the HFC between the LR and the HR images. This
finding presents a potential feasible solution to apply high-
performance EBSR methods in commercial broadcasting
applications, such as the 4K UHD-TV.
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