
BIT-DEPTH EXPANSION FOR NOISY CONTOUR REDUCTION IN NATURAL IMAGES

Akira Mizuno, Masayuki Ikebe

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, 060–0814, Japan

ABSTRACT
We propose a bit-depth expansion (BDE) method targeting natural
images. In the analog part of an imaging system, signal intensity
fluctuations occur due to noise (e.g. thermal noise in the image sen-
sor). After that, in the digital part, the intensities are rounded off to
limited levels. The latter process, which is quantization, increases
the intensity of fluctuation errors caused by stochastic resonance.
These errors are viewed as false contour artifacts in the gradation
region. Our goal was to obtain the original signal from the quan-
tized noisy signal. We formulated a probabilistic model based on this
quantization process, and successfully reconstructed smooth grada-
tions from noisy contours. Subjective evaluation by voting clarified
that the output image has higher quality.

Index Terms— Quantization, bit-depth expansion, false con-
tours

1. INTRODUCTION

Bit-depth expansion (BDE) is desired in high dynamic range (HDR)
imaging. Prior research on an HDR display system [1] has shown
that more than 10 bits are necessary for the number of quantization
levels to cover the desired range without quantization artifacts.

When displaying a relatively low bit-depth (LBD) image on a
monitor, the brightness gets discontinuous values. Histogram equal-
ization or other image enhancement methods may generate a sparse
histogram. These discontinuities of brightness create an artifact
called a false contour, appearing in low spatial frequency or low
contrast regions such as the sky, sea, or skin. The false contour,
which does not exist in the original scene, seriously degrades the
image quality. Therefore, a method for reconstructing the origi-
nal smooth gradation by interpolating the false contour is required.
Coming up with an optimized reconstruction method is currently the
most important issue in BDE.

Many attempts have been made to address this need in previous
work. Low-pass filtering methods [2, 3, 4, 5, 6, 7, 8, 9] have been
proposed to smooth the contour region. Dithering-based methods
[7, 8, 10, 11] have been shown to reduce the visibility of undesirable
artifacts. Flooding-based methods [12, 13, 14] can convert the 2D
extrapolation problem into a 1D interpolation. Optimization-based
methods [14, 15] maximize both accuracy and smoothness as much
as possible. Some previous methods work well on images with no
noise (e.g., computer graphics). Unfortunately, however, none of
them can work on natural images.

Previous work’s premise is that no noise is added to the original
signal. In this case, the image quantization process is formulated as

y = Q(x), (1)

where x = [x1, x2, · · · , xn]T ∈ Rn is an original signal, y ∈ Zn is
a quantized signal, and Q is a quantizer function defined as rounding

off fractions in this paper. Eq.(1) requires that the pixel values of an
estimated signal is in per-pixel quantization bins:

x∗i ∈ [yi, yi + 1) , (2)

where x∗i is the estimated value of xi (1 ≤ i ≤ n).
We use a more accurate formulation because natural images are

inseparable from noise. The original signal is fluctuated by the noise
before quantization:

y = Q(x+ ξ), (3)

where ξ ∈ Rn denotes the noise—it is stochastic variable generated
from its distribution. Eq.(3) only states that the fluctuating signal is
in the quantization bins:

x∗i + ξi ∈ [yi, yi + 1) . (4)

Difference between the two quantization models Eq.(1) and
Eq.(3) is constraint of the estimated signal x∗. The constraint Eq.(2)
from the model Eq.(1) restricts the value range of x∗ directly. On
the other hand, Eq.(4) only requests the value range of x∗ + ξ. It
does not decide the value range of estimated signal x∗. This means
that estimation out of range (i.e. x∗i /∈ [yi, yi + 1)) is allowed. The
removing constraint of x∗ is an important point of this paper.

Figure 1 shows example results of BDE using the two different
models, Eq.(1) and Eq.(3). The quantized signal (green) given from
the fluctuating signal (cyan) is input for a BDE method. The quan-
tized signal consists of some flat regions and noisy ones. A smooth
sine-like curve is expected as a dequantized signal.

Then, the dequantized signals (blue or red) are obtained by two
different methods. The methods for Figure 1(a) and Figure 1(b) are
based on the models Eq.(1) and Eq.(3) respectively. Figure 1(a) is
generated by one of flooding–based method [12], and Figure 1(b) by
our method described later in this paper.

We can see that the result of Eq.(1) fails to reconstruct smooth
gradations because the dequantized signal must be in quantization
bins by reason of Eq.(2). The allowed range for dequantized signal,
the quantization bins denoted as gray in Figure 1(c), is raised and
collapsed incessantly at noisy area. Therefore, to achieve a continu-
ous function, the dequantized signal is compelled to be flat by taking
lower bounds of the raised bins and upper of the collapsed bins.

Because the result of Eq.(3) has smooth gradations, it is better.
We explain the BDE method using Eq.(3) in this paper.

2. FORMULATION

Finding the most probable x from an observed y is an inverse prob-
lem of Eq.(3). We use the maximum a posteriori (MAP) estimation:

x∗ = arg max
x

Pr(y|x)Pr(x), (5)
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(a) Dequantization results by flooding–based method [12]

(b) Dequantization results by our method
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(c) Zoom-in. The blue and red lines are the dequantization signals in (a)
and (b) respectively. Please see that the blue line can not stray from quan-
tization bins (gray).

Fig. 1. Example results of BDE methods based on different models
Eq.(1) and Eq.(3)

where Pr(y|x) is a conditional probability of y under the condition
x and Pr(x) is a prior probability of x.

One of the optimization-based methods [15] already applied the
MAP estimation to dequantization, but the method still has the same
kind of problem shown in Figure 1(a) because it uses the model
Eq.(1). Our research solves the problem by using Eq.(3) instead of
Eq.(1). In this section, we formulate the MAP estimation based on
the model Eq.(3).

2.1. Prior probability

A prior probability Pr(x) is formulated as a function to measure
smoothness of x.

First, we define an weight parameter wi,j between pixels yi and

yj in the quantized image y as follows:

wi,j =

{
1 (j ∈ Ni ∧ |yi − yj | ≤ κ) ,
0 otherwise,

(6)

where Ni is a set of 4 nearest neighbors of the i–th pixel, and κ is a
threshold parameter. In the image domain, wi,j = 1 denotes that the
pixels yi and yj are in the same region.

Using Eq.(6), we define a prior probability Pr(x) as

W (x) =
1

2

n∑
i=1

n∑
j=1

wi,j(xj − xi)2, (7)

Pr(x) = exp

(
−W (x)

2σ2
s

)
, (8)

where the function W (x) means a total squared variation of the im-
age x segmented bywi,j , and σs is a parameter to adjust the smooth-
ness.

2.2. Likelihood

We formulate the likelihood using a distribution function of the noise
ξ. The dominant noise from image sensor is known as shot noise.
The shot noise follows a Poisson distribution. In this paper, we ap-
proximate the Poisson noise as a normal distribution. Thus, the prob-
ability distribution of x̃i = xi + ξi is generated from xi with added
a stochastic variable ξi, Pr(x̃i|xi), can be formulated as a common
normal distribution function:

Pr(x̃i|xi) =
1√
2πσ2

g

exp

(
− (x̃i − xi)2

2σ2
g

)
, (9)

where σg is the variance of the distribution of ξi. From the defi-
nition of the quantization bin (Eq.(4)), yi is generated when x̃i is
in range [yi, yi + 1). Therefore the probability of yi with given
xi, Pr l(yi|xi), can be calculated by accumulating Pr(x̃i|xi) for all
possible patterns of x̃i as follows:

Pr l(yi|xi)=
∫ yi+1

yi

Pr(x̃i|xi)dx̃i

=
1

2

(
erf

(
yi − xi + 1√

2σ2
g

)
−erf

(
yi − xi√

2σ2
g

))
, (10)

where erf(·) is the error function. Figure 2 shows the function
shapes of Eq.(10).

Here is another formulation for a special case. When yi is a
maximum (ymax) or minimum (ymin) value of its possible range, we
can empirically estimate that the signal may be saturated. At the
boundary of the signal range, we define the probability of yi as

Prb(yi|xi) = exp

(
− bi(xi)

2σ2
b

)
, (11)

bi(xi) =


(ymin − xi)2 (yi = ymin) ,

(ymax − xi + 1)2 (yi = ymax) ,

0 otherwise.

(12)

The likelihood that Pr(y|x) is calculated by using Eq.(10) and
Eq.(11) is as follows:

Pr(y|x) =
n∏

i=1

Prb(yi|xi)Pr l(yi|xi). (13)

The probability Prb(yi|xi) works as a bias to shift the peak of prob-
ability Pr l(yi|xi).
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Fig. 2. Function shape of Eq.(10)

2.3. Optimization

We define the following optimization problem by combining Eq.(5),
Eq.(8), and Eq.(13):

F =
1

2σ2
s

W (x) +
1

2σ2
b

n∑
i=1

bi(xi)

−
n∑

i=1

logPr l(yi|xi), (14)

x∗ = arg min
x

F . (15)

The partial derivatives of objective function F are as follows:

∂F
∂xi

=
1

2σ2
s

W ′
xi
(x) +

1

2σ2
b

b′i(xi)−
Pr ′l(yi|xi)
Pr l(yi|xi)

, (16)

W ′
xi
(x) = 2

n∑
j=1

wi,j(xi − xj), (17)

b′i(xi) =


−2(ymin − xi) (yi = ymin) ,

−2(ymax − xi + 1) (yi = ymax) ,

0 otherwise,

(18)

Pr ′l(yi|xi) =
1√
2πσ2

g

(
− exp

(
− (yi − xi + 1)2

2σ2
g

)

+ exp

(
− (yi − xi)2

2σ2
g

))
, (19)

where W ′
xi
(x) is a partial derivative of the function W (x) with re-

spect to the variable xi. The problem can be solved with the L–
BFGS–B quasi-Newton method [16, 17, 18].

3. EXPERIMENTATION

We compared the results of the conventional methods and our
method in Figure 4, Figure 5 and Table 1. The outputs were esti-
mated from a quantized image. We evaluated their image qualities
by calculating the peak signal to noise ratio (PSNR) and voting by
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Fig. 3. Simulation of low-pass filtering

Table 1. Visual quality evaluation by voting

Image Percentage of votes (%)
Wan 2012 [13] Wan 2014 [15] Proposed

Artificial I 12.9 6.5 80.6

Artificial II 22.6 16.1 61.3

Natural I 12.9 6.5 80.6

Natural II 6.5 3.2 90.3

Natural III 38.7 9.7 51.6

(Grayscale 4→ 8 bits, Number of samples = 31)

persons. Note that the PSNR values for Figure 5 can not be calcu-
lated because a ground-truth signal, namely a photograph without
noise, can not be extracted from a natural image.

Two types of the conventional methods are compared with our
method: the flooding–based one [13] and the optimization–based
one [15]. The reason why the low–pass based methods are excluded
is that they are not suitable to reconstruct smooth gradation from
false contours. Figure 3 shows the simulation result of decontour-
ing using a low-pass filter. When the flat region is in the input sig-
nal, the contour effect remains in the result. The low–pass filtering
can remove high–frequency effects in quantized signal, but can not
remove flat region because flat signal is completely low–frequency
signal. The filter can only convert the step function (quantized signal
in Figure 3) to the smoothed step function (result signal in Figure 3).
Actually, we want to obtain a smooth slope–like function from a step
function. Therefore, the low–pass based methods fails to reconstruct
smooth gradation from large contours typically appearing in the sky,
sea or skin.

3.1. Experimental results

Figure 4 shows the results for artificial data. The original image
was generated with additional noise in our computer. Then, the im-
age was quantized and inputted into each method. The conventional
methods can not reconstruct smooth gradation because of noise, but
our method can.

Figure 5 shows the results for a natural image. In the sky of the
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(a) Ground-truth (left) and quantized image after adding noises (right) of
“Artificial I”

(b) Wan et al. (2012) [13] (PSNR:41.9 dB)

(c) Wan et al. (2014) [15] (PSNR:34.1 dB)

(d) Our method (PSNR:46.1 dB): κ = 1, σs = 0.01, σg = 0.1 and
σb = 0.5

Fig. 4. Results and absolute error maps of BDE (grayscale 4 → 8
bits) for an artificially generated data. For (b)–(d), the left column
shows results and the right error maps against the ground–truth. The
ranges of all error maps are amplified (×16) for visibility.

input image, false contour artifacts are evident. Our method suffi-
ciently removed the artifacts (Figure 5(d)). This demonstrates that it
can reconstruct smooth gradations efficiently.

Table 1 shows the visual quality evaluations by persons. The
voters are presented three types of results which are outputs of Wan
et al. (2012) [13], Wan et al. (2014) [15] and our method. And then,
they choose one’s best image.

The voting was held on a specially prepared web site. Voters ac-
cess to the site and look the images with their digital monitor. Two
artificial images and three natural images were used for the voting.
For artificial images, the ground-truth image is opened to voters, and
they choose an image most similar to it. On the other hand, vot-
ing for natural images, original image is not opened. The voters can
only see three output images, and they have to decide which one is
a most quality photograph.The order of the output images are ran-
domly shuffled for each voter. It is blind test because the voters are
not able to know any identities about the images. As a result, most
of the voters chose our method in every case.

Comparing their computational costs is not easy. They need to

(a) Original (left) and quantized image (right) of “Natural I”

(b) Wan et al. (2012) [13]

(c) Wan et al. (2014) [15]

(d) Our method: κ = 1, σs = 1, σg = 0.05 and σb = 1000

Fig. 5. Results and absolute error maps of BDE (4 → 8 bits / chan-
nel) for natural image. For (b)–(d), the left column shows results and
the right error maps against the original.

use iterative algorithms for solving the problems. The number of
iteration for Wan et al. (2012) [13] is depending on the width of
false contour in input images. If input image has wide contour bands,
large iteration number is required. Wan et al. (2014) [15] and our
method are optimization-based approaches. The computational costs
for them are depending on their parameters and input images.

4. CONCLUSION

We proposed a method for improving BDE quality for natural im-
ages. Our quantization model expresses the quantization process in
natural image. We formulated an inverse quantization problem via
MAP estimation focusing on noise distribution. Our method can re-
cover smooth gradations from false contour artifacts.
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