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ABSTRACT

This paper presents an algorithm for fully reconstructing a 3D
face from a single image. This task is still highly challenging
as most current methods only care about the frontal face, ig-
noring side face, such as the neck, ears etc. In our algorithm,
to get the more detailed texture, we deal with the shape re-
construction and texture recovery respectively. For shape, we
estimate the deformation of the 3D model by a set of feature
points. For texture, due to the similar facial structure, we di-
vide the full texture into patches and show how sparse learn-
ing model can be used to fully recover the texture of the 3D
face. Extensive experiment results on the CMU-PIE database
and images downloaded from the Internet demonstrate that
our method outperforms the state-of-the-art methods.

Index Terms— 3D Morphable model, face alignmen-
t,deform transfer, full reconstruction, sparse learning

1. INTRODUCTION

The 3D face reconstruction is a powerful tool for a wide range
of computer vision tasks, such as 3D face recognition, 3D face
tracking, medical plastic and so on[1, 2, 3, 4]. A number of
methods have been proposed to acquire 3D face [3], despite
we can obtain high resolution face models with 3D sensors,
reconstructing the shapes and textures from 2D images is still
a problem worthy of research.

Reconstructing 3D face from 2D images is an extreme-
ly ill-posed problem. Most recent methods suppose the ex-
isting 3D face model as the priority guiding reconstruction.
For example, Kemelmacher-Shlizerman [5] proposed a recon-
struction framework based on shape-from-shading (SFS). She
utilized the input image as a guide to “mold” a single ref-
erence model to reach a reconstruction of 3D shape. In the
SFS framework, it essentially needs the frontal face in the in-
put image to avoid the reconstruction failure. However, this
strong requirement upon the input image prevents SFS from
providing a good reconstruction of the profile face.

Blanz and Vetter proposed a very powerful framework for
face reconstruction with only one input image [4, 6]. They
trained a 3D face database to build a morphable model, and
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Fig. 1. The (a) and (d) columns are images downloaded from
Internet with different illumination. (b) and (e) columns are
the result of texture interpolation. Fully reconstruction for 3D
face with our algorithm are presented by the (c) and (f).

optimized a cost function between the input image and mor-
phable model. Experiments demonstrated that the 3DMM
framework did reconstruct the full 3D face robustly. How-
ever, 3DMM with Stochastic Newton Optimization (SNO) is
time-consuming and easy to trap into local minima, which
makes faces appeared unrealistic.

There have been some attempts to address local minima
problem. Blanz et al. [7] focused on improving the accu-
racy and efficiency of the fitting process respectively. In this
case, they avoided the problems of local minima by using fea-
tures derived from the input images rather than intensity data
itself. But the system with a manually intensive procedure
is far from flexible, since the user needs to manually speci-
fy point matching across multiple images and 2D-3D feature
correspondences.

For the texture recovery, almost all methods for 3D face
reconstruction only care about the frontal and visible texture
, but not the neck, ears and other missing parts, which is e-
qually important for reconstruction, recognition and so on. In
[8], Jiang employed a linear interpolation algorithm to recov-
er the missing areas by using neighborhood valid texture. But
experiments demonstrate that interpolation doesn’t work well.
Because in most cases, the missing holes are to vast to fix by
the neighborhood vertexes.

In this paper, we propose an efficient framework (Fig.
2) for reconstructing the shape and texture of 3D face auto-
matically and fully. In our framework, we deform the model
through a set of sparse feature points, obtained by the reliable
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Fig. 2. Framework of our method, which consists of 5 steps as follows: 1) train a morphable model on the 3D database; 2)
detect 68 landmarks on the face in the input image; 3) do an analysis-by-synthesis loop to optimize shape through 23 landmarks;
4) extract and infer texture from input image; 5) refine the full 3D reconstruction.

landmarks detection algorithm [9]. We find that the position
of landmarks on eye, nose and mouth are almost position in-
variant, but not the ones on the side face. Thus we evaluate
the relationship between reconstruction accuracy and differ-
ent number of points and employ the most appropriate selec-
tion for better performance.

For reconstructing the texture, we use the linear combina-
tion to infer the shaded texture. As the facial structures among
all human beings are almost the same [10] which means that
inferring the missing texture based on learning strategy is a
reasonable choice. Firstly, we train the model with a well-
registered texture in 3D face database, and reconstruct miss-
ing texture via three steps: (1) extracting valid texture from
the input image; (2) applying the learned model to infer the
missing texture roughly; (3) computing the gradient field to
refine the whole texture (Fig. 3).

The rest of this paper is organized as follows: In Section
2, we presents an automatic, non-iterative algorithm for shape
reconstruction with a set of feature points. The learning-based
texture recovery algorithm is proposed in section 3. Finally,
the experiments for images in the CMU-PIE and downloaded
from the Internet are presented in Section 4.

2. MODEL-BASED SHAPE RECONSTRUCTION

2.1. 3D Morphable Model

The morphable model is based on a data set of 3D face scans.
In this paper, we apply the BJUT database [11] as the training
set. We represent each 3D face with a shape vector and a
texture vector. The shape vector consists of the coordinate
value in the 3D world (xi, yi, zi) ∈ R3. Similarly, the texture
vector consists of every vertice’s color values (ri, gi, bi) ∈
R3. Now, 3D face model can be expressed as:

s = {(x1, y1, z1) , · · · , (xn, yn, zn)} ,
t = {(r1, g1, b1) , · · · , (rn, gn, bn)} .

Through above representation, we transform our 3D face
into shape space and vector space. After point-to-point 3D
correspondence, we can obtain the new face by a linear com-
bination of the shapes and textures as follows:

s =

m∑
i=1

aisi, t =

m∑
i=1

biti. (1)

Varying the coefficients a = (a1, a2, · · · , am)
T ∈ Rm and

b = (b1, b2, · · · , bm)
T ∈ Rm can generate arbitrary new

faces. We perform a Principal Component Analysis (PCA)
on the database of shape and texture vectors separately. Fi-
nally, we represent the model face with the average face and
the combination of eigenvectors:

s = s̄ +

m−1∑
i=1

αisi, t = t̄ +

m−1∑
i=1

βiti, (2)

where α, β ⊆ Rm−1 are the coefficient vectors.

2.2. Reconstruction with a Set of Sparse Points

Blanz [7] presents an approach for shape recovery under ar-
bitrarily pose by a given set of 2D points on the input image.
Our method is inspired by [7], but combines the state-of-the-
art face alignment techniques to make process automatical.
We fit 68 landmarks on each input image with the algorithm
in [9] and apply 23 landmarks during deform the shape mod-
el. We compute the root mean square error (RMSE) of the
3D face reconstructed from 68 and 23 landmarks (red points
in Fig. 2) with ground truth. Table 1 illustrates that the better
choice is 23 points. Because the points around eyes, mouth
are view invariant, making the algorithm much robust.

For each feature point, we can find its correspondent ver-
tex on the model by projecting 3D vertexes onto 2D face and
applying the same landmarks detection algorithm. The calcu-
lation of Mahalanobis distance between the feature points on
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Table 1. The accuracy with different number of points.
the number of landmarks 68 points 23 points

average RMSE to ground truth 3.73 3.61

input image and the 3D model turn to be a linear combination
problem. So, we can solve it by a least square minimization.

Set L as the orthographic projection in this paper, the s-
parse 3D model is r = Lsi,L :Rn 7−→ Rl. After obtaining
the landmarks both on input image and average face, we can
calculate y as:

y = r− Ls̄ = Lx. (3)

This is a overdetermined equation, which can be solved by
least square regression. As detained descried in [7], the final
cost function is:

E = ‖ Qα− y ‖2 +λ ‖ α ‖2 +const. (4)

Here, we treat the λ as the weight factor. Q is the sparse
model matrix, and α is the correspondent coefficient. Using a
Singular Value Decomposition Q = UWVT with a diagonal
matrix W = diag(wi), we can solve the coefficient c in a
single step that:

α = Vdiag(
wi

w2
i + λ

)UTy. (5)

We deal with the unknown translation, rotation and scale pa-
rameters by treating them as additive terms in the eigenvec-
tors of average model. Finally, we recover the shape with Eq.
(2). This is a direct, non-iterative algorithm that makes the
reconstruction much efficiently [7].

2.3. Fitting Process

We fit the 3D model to the 2D image in a analysis-by-
synthesis loop. With 23 landmarks, the algorithm can au-
tomatically reconstruct 3D face in high resolution. The esti-
mation for the rotation in first time of computation is under
the assumption of small angels γ, θ, φ, which is unprecise for
large rotation [7]. Therefore, we do iterations twice for full
shape recovery. After fitting process, we can not only get the
linear coefficients for shape, but also the pose of the image
and the focal length of the camera.

3. LEARNING-BASED TEXTURE RECOVERY

Because of occlusion, the 3D face texture is inevitably incom-
plete reconstructing from a single image. A learning-based al-
gorithm is presented here to learn a transform model to infer
missing texture from the frontal reliable ones.

Model definition: Each full texture in the database is di-
vided into Ns patches. The patch in the same position with
different subjects lie in a similar facial structure space, which
means any new RGB patch can be approximately spanned by
a set of template patches under the assumption of diffuse-only

Fig. 3. The process for texture inferring and refinement.

reflectance. Let pj represent the jth valid patch extracted
from the visible face. We determine one patch whether valid
or not through the result of landmarks detection. Thus, we
can obtain the ith missing patch of texture with

yi = f1p1 + f2p2 + · · ·+ fNpN + ε = BF + ε, (6)

where B = (p1...pN) ⊆ R3d×N , pj ⊆ R3d is an 1D formed
by RGB values, d is the number of vertex that one patch con-
tains. F = (f1, f2, ...fN )T is the coefficient vector, and ε
is a noise term representing the specular reflection on some
faces. For the complicated light condition in reality, ε is al-
ways nonzero entries. To explicitly capture the illumination
constraints, we adopt the technique of trivial templates [12]
here, such that each trivial template has only one nonzero ele-
ment. The trivial templates I = (I1, I2, ..., Id) ⊆ R3d×3d are
augmented into B as follows:

yi = (B, I,−I)

 F
e+

e−

 = Cη, s.t. η ≥ 0, (7)

where e+ ⊆ R3d,e− ⊆ R3d are called a positive trivial
coefficient vector and a negative trivial coefficient vec-
tor respectively. C = (B, I,−I) ⊆ R3d×(N+6d) and
η = (F, e+, e−)T ⊆ R(N+6d) is a non-negative coefficient
vector. The argument for enforcing nonnegativity constraints
on η comes from their ability to deal with complicated light
condition more than diffuse-only.

The system in Eq. (7) is underdetermined. We intend
to choose the most similar templates from B for matching
yi. So the coefficient η should be as sparse as possible. The
error caused by environment illumination typically corrupts a
fraction of the patches, there are a limited number of nonzero
coefficients in e+ and e− that account for the noise patch.
Consequently, we rewrite the sparse model as:

min
η
‖ yi − Cη ‖22 +λ||η||1, (8)

where ‖ η ‖1 and ‖ yi − Cη ‖2 denote the `1 and `2 norms.
Solution: The solution of above problem is a intractable

challenge, here, we choose the Augmented Lagrangian
Method (ALM) [13, 14] to solve (8), resulting in several
easily tackled unconstrained subproblems. We add an auxil-
iary variable as τ = η. Thus, the Eq. (8) becomes:

min
η,τ

1

2
‖yi −Cτ‖22 + λ ‖η‖1 +

µ

2
‖ τ − η ‖2, s.t. τ = η,

(9)
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Fig. 4. The face results with the PIE-CMU database.

where µ is a penalty parameter. To guarantee the equality con-
straint, it requires µ approaching infinity, which may cause
bad numerical conditions. Fortunately, there is no need to re-
quire µ −→ ∞ when we introduce a Lagrangian multiplier
instead. We get the standard ALM equation as:

L (τ, η,Λ, µ) =
1

2
‖yi −Cτ‖22 + λ ‖η‖1

+
µ

2

∥∥∥∥τ − η +
Λ

µ

∥∥∥∥2
2

, (10)

where µ is a penalty parameter, Λ is Lagrangian multiplier.
We will solve the η and µ separately. The algorithm flow is
introduced in the Algorithm 1.

Algorithm 1 Learning-based Texture Recovery

Input: Template patches of texture B = [p1, . . . ,pN ] ⊆
R3d×N , and the ith missing patch.

1: Init variables Λ0, µ0, η0, τ0,C = (B, I,−I).
2: do
3: solver for η : H← τ + Λ

µ ,

4: get the equivalence problem:f(η) = |η|+ λ
2 (h− η);

5: η∗ = max
(
|h| − 1

γ , 0
)
· sign (h) ;

6: solver for τ : P← η − Λ
µ ,y← Cη;

7: τ =
(
yCT + µP

) (
CCT + µI

)−1
;

8: update Λ : µ← kµ(k > 1);
9: Λ← Λ + µ(τ − η);

10: while(abs(τ − η) < ε)
Output: The refinement texture ŷ = C ∗ η.

After obtaining the inferring textures, we combine them
with the valid ones directly. Therefore, gaps exist between
patches, which makes the texture appeared unrealistic. Then,
we use streaming multi-grid for gradient-domain operation
(SMG) to solve the Poisson equation and smooth the full tex-
ture which is detailed described in [15].

4. EXPERIMENTS AND RESULTS

We use the BJUT-3D as the face database. It contains 250
males and 250 females [11], with the age ranging from 16
to 49. All faces are in the natural expression and under the
natural light. Approximately, each face consists of 65,000

vertices and 130,000 triangles. Besides, we have the CMU-
PIE 2D faces database [16] and images downloaded from the
Internet for testing.

For quantitatively analysis, given a reconstructed shape
and its ground truth, we compute the root mean square error
(RMSE) of each vertex as the errors of fitted shapes. The
RMSE distance are normalized by the eye-to-eye distance.
We select 100 faces which do not appear in the training set
as the ground truth. The results in Table 3 indicates the stable
performance for reconstructing from different views.

Table 2. Average rating of 200 reconstruction examples.

very good good acceptable bad
% 25.00 34.50 26.00 14.50

Table 3. Average error over all features in different views .

view ba bb bc bd be
angle 1.1◦ 38.9◦ 27.4◦ 18.9◦ 11.2◦

error 3.34 4.05 3.73 3.58 3.55
view bf bg bh bi be
angle 7.1◦ −16.3◦ −26.5◦ −37.9◦ 0.1◦

error 3.61 3.71 3.79 3.98 3.44

For qualitative analysis, because of the full texture refine-
ment process, our system produces plausible and photo real-
istic 3D models consistent with the input images (Fig. 1 and
Fig. 4). We test our method on images downloaded from the
Internet and PIE database from CMU [16] which vary in pose
and illumination. We divide the results into four groups: very
good, good, acceptable and bad. The average rating of 200
examples is showed in Table 2, which illustrates that most
images obtain good result with texture. However, still part of
results are bad because of the strong light noise and the wide
rotation with yaw (more than 45 degree).

For the runtime, the landmarks detection with ESR takes
less than 20 ms per-image (300 × 300 pixels ) on a standard
PC. And the process for shape fitting, texture extracting and
inferring to full reconstruction takes around 20 seconds, while
SNO took about 4 minutes per image in 3DMM framework.

5. CONCLUSION

We proposed a model-based shape reconstruction and learning-
based full texture recovery framework. We use 23 feature
points to reconstruct the high resolution 3D shape automati-
cally, avoiding the local minimum. Based on sparse learning,
we can fully reconstruct face’s texture, producing plausi-
ble and photo realistic 3D models, solving the problem few
researchers focus on. Both qualitative and quantitative exper-
iments show that our method is able to produce high-quality
3D face models. We have tried to transplant this application
to the mobile device. We firmly believe that this 3D face
reconstruction framework can be applied to face recognition,
medical beauty and so on.
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