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Abstract—Semi-Global Matching (SGM) is a robust method
in traditional stereo matching. It maintains precise boundary
with low computational cost. However, directly applying SGM
to light field stereo matching degrades the results greatly due
to the sparsity of support points. In this letter, we proposes a
novel stereo matching approach for large-scale light field images.
We observe that adding weak edges to support points efficiently
stabilizes the depth propagation. Based on this observation, we
apply a cross detector to obtain support points, and then we
propagate the depth of support points to homogeneous region.
By solving a semi-global energy minimization problem, the depth
information can be well estimated from epipolar plane images.
Besides, we introduce a new strategy to deal with occlusion. We
iteratively sample the pixels under current disparity hypothesis
and the consistency scores are aggregated by a weighted winner-
take-all strategy. Our method allows for significant reduce of
the disparity search space, the time is halved and the depth is
more robust at the occurrence of occlusion. For every pixel, the
calculation is based on a single EPI and locally independent.
Implementation on GPU shows that our method can achieve
state-of-art results with less computational cost.

Index Terms—3D reconstruction; light field;

Stereo matching plays an important role in many computer
vision applications, including 3D reconstruction, image sup-
perresolution [8], synthetic aperture [15]. Traditional stereo
methods focus on estimating the pixel correspondence between
two or more images. Methods [1], [12], [17] based on local
correspondence are typically fast, but these methods require an
appropriate choice of window size and cannot be consistently
matched in textureless area. Algorithms [7] based on global
correspondence overcome afore-mentioned problems by im-
posing smoothness constraints on the depth image. However,
these methods require large computational effort and storage
capacity. Besides, these constraints will cause depth image
to be over-smoothed and useful edge information to be lost.
A compromise strategy [4], [5], [13], [14] is to reduce the
ambiguities on correspondence by Semi-Global Matching.
This strategy introduces an automatically determined window
[5], [14] to preserve local structure. For example, this window

can be obtained by over-segmentation [4] or triangulation [13].
The results are more robust with small computational cost.

Since the depth error increases quadratically with the dis-
tance, high-resolution images are needed to obtain accurate
depth estimation. While traditional stereo matching has been
exploited exhaustively, issues on light field gain much more
attention recently. For 3D light field, the basic insight to scene
reconstruction is first proposed by [2], as shown in Fig.1,
images are captured densely along a linear path(C1,C2 and
Cx(x = 3, 4, 5, ...) present the focal of different cameras).
After obtaining the picture, we pile them up along line s.
Slicing these pictures in a fix point v∗ ,the EPI images can
be obtained. Then every captured scene point corresponds to
a linear trace in the epipolar plane image(EPI). The relation
between the slope of the trace and the distance to camera can
be denoted as

d =
fb

z
(1)

where d is the disparity, f is the camera focal length in pixel,
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Fig. 1. The EPI-representation of 3D light field proposed by [2]. Every scene
point corresponds to a linear trace in the epipolar plane image. The slope of
trace is inversely proportional to the disparity.

and b is the metric distance between each adjacent pair of
images. By dividing EPI into several tubes, [19] gave a more
compact representation of 3D light field. Recently, [11], [18]
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used local structure tensor as initial depth, then refined it by
solving a total variation optimization problem. However, these
global methods require high computational cost. This cost is
unacceptable when it comes to high-resolution images. [3]
proposed a fine-to-coarse strategy, they estimated depth images
at different scales and propagated to full resolution. [16]
introduced a bilateral consistency metric on surface camera to
filter out occluded pixels, they obtained better reconstruction
at the occurrence of occlusion. However, this bilateral metric
is constrained to small field of view and cannot applied to real
scenes.

In this Letter, we propose a new method to estimate the
reconstruction from high resolution 3D light field images.
Our method involves support points estimation and depth
propagation. In the support points estimation step, we use cross
detector to retrieve support points and obtain their depths by
photo-consistency constraint. In the depth propagation step, we
define a semi-global energy optimization problem similar to
[14], also a weighted winner-take-all strategy is introduced to
handle occlusion. Unlike [3], our method only estimates depth
at full resolution and uses semi-global matching framework
during depth propagation. By this framework, we limit the
search space and efficiently reduce the computational cost. To
the best of our knowledge, our method is the first approach
to introduce Semi-Global Matching(SGM) into light field
reconstruction.

We denote the light ray as r=L(u,v,s), where s is the 1D
location and (u,v) represent the direction in image plane. In
order to propagate at full resolution, we propose a new edge
detector, as illustrated by Fig.2, we observed that there are
two kinds of edges in EPI, specifically horizontal edge and
vertical edge. Horizontal edge is well defined since it is also
horizontal edge in original images. However, vertical edge is
ill-defined because the vertical difference in EPI is not equal
to difference in original images. So in [3], the author limited
his work to horizontal edge. Actually, as shown in [11], [18],
depth estimation in EPI is not related to original images. In
this paper, we completely transfer the problem to EPI. We
name horizontal edge as strong edge and vertical edge as
weak edge. When we limit support points to strong edges,
the sparsity of strong edges will reduce the consistency of
reconstruction. However, introducing weak edges efficiently
stabilize the results which allows for the introduction of Semi-
Global Matching framework. In this paper, We propose a
simple cross check detector, given by

S (u, s) =
∑

(u′,s′)∈(V (u,s)∪H(u,s))

‖E (u, s)− E (u′, s′)‖2 (2)

Where V (u, s) means vertical neighborhood of (u, s) and
H(w, s) means horizontal neighborhood of (u, s).We thresh-
old S by εe. Here εe is set to 0.015, we use this cross detector
to check the edge confidence and threshold it to obtain support
points.

This extension is simple but very important for semi-global
matching. As demonstrated by Fig.3, if only strong edge is
used, since the support points are too sparse, the horizontal
depth propagation is inconsistent. With little additional cost,

H(u,s) (u,s)

(a) (c)(b)

V(u,s)

Fig. 2. (a)Illustration of our cross edge detector.(b)strong edge defined by
[3].(c)our proposed weak edge

we introduce weak edge points, and this strategy allows us to
robustly propagate depth into textureless regions.

Fig. 3. The effect of adding weak edge. (Left) strong edge only.
(Right)combine strong edge with weak edge

The binary mask limits the computation of depth at support
points and we equally quantize the disparity between adjacent
images into N levels, here N is 256. We obtain the depth
by photo-consistency constraint. Before depth estimation, we
select a fixed s, namely, we only reconstruct a single image
of 3D light field. In this paper, we set s to the center image,
denoted by ŝ. As shown in Fig.4, for every pixel in EPI(u,ŝ),
we assign a hypothetical disparity d̂∈[1,N], we can get the
pixel set R along the red line w.r.t this disparity d̂, R is
constructed as follows:

R(u, d̂) = {E(u+ (s− ŝ)d̂, s)|s = 1, 2......} (3)

.
s

u

Fig. 4. Illustration of our weighted winner-take-all strategy at occlusion.
The consistency in whole trace is small. However, the maximum of upper
and lower parts is high. We sample the whole trace several times and use the
maximum as the final consistency measurement.

Then we can define a photo consistent score P w.r.t this
hypothetical disparity as
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Pd (u, ŝ) =
1

|R (u, ŝ)|
∑

(u∗,s∗)∈R

ϕ (E (u, ŝ)− E (u∗, s∗))

(4)

ϕ (s) = 1− e−
s2

2σ2 (5)

Here, we set σ = 1.0/255. In our experiments, We observe
that this metric function always maintains better distinctive-
ness as illustrated by Fig.5. The true disparity is always at
the local minimum using our metric. In fig.5 we compared
our consistency metric with L2-norm(used by [3]), L1-norm
at three regions. In the well-defined edge, the three metrics all
maintains good distinctiveness. However, in textureless and
complicate regions, our metric is better.
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Fig. 5. Comparison of different metric functions under real scene reconstruc-
tion. In well-defined edge(top right), all metrics are distinctive. In textureless
and complicate regions(second row), our metric stays better result.

Because photo-consistency is reduced at occlusions, the
score defined above might fail to get the robust estimation.
For example, the red point in Fig.4, occlusion happens when
two line cross. The true line at red point is the blue/green line,
however, due to occlusion, the consistency is low at this line.
But, we observe that the maximum of two parts is high. In
order to reliably estimate the slope, we apply a winner-take-
all strategy. We randomly select a subset S from R(u, d̂), and
measure the consistency at this subset only. Besides, since for
adjacent frames, occlusion is more likely to happen, we obtain
a weight defined by

∑
s∈S

1 - G(s - ŝ). Here G is a Gaussian

kernel. We weight the photo consistency above to get the final
score of current sampling. We repeat this step and select the
best score as the final consistency for the hypothetical disparity
d̂. Unlike [16], we don’t differ the unoccluded pixels from the
occluded pixels since our reconstruction is not limited to small
field of view, the bilateral consistency metric is not suitable
here. As shown in Fig.6, by this weighted winner-take-all
strategy, the depth at occlusion is consistently estimated.

After we obtained the depths of support points, the depth
is horizontally propagated to less detailed region to get the
dense reconstruction. For every unknown pixel E(u,ŝ), we find
the nearest two support points E(u1,ŝ),E(u2,ŝ),and linearly
interpolate the expected disparity of E(u,ŝ). For simplicity, we
just denote ŝ as s in the following section.

µ(u, s) =
u− u1
u2 − u1

D(u2, s) +
u2 − u
u2 − u1

D(u1, s) (6)

Fig. 6. Illustration of our winner-take-all strategy. As shown in the first
row,the depth at occlusion can be consistently estimated with our strategy.
The second row is the result of original paper

TABLE I
MAXIMUM DISPARITY

Image Set Maximum disparity
Bike 12.5

Church 8.5
Statue 7.0
Couch 15.0

Denote the disparity in unknown pixel as d(u,s), we then
suppose d(u,s) satisfying a Gaussian distribution with mean
µ(u,s) and variation α. Defined by

Ep =

{
φ+ exp(− (d−µ)2

2α2 ) |d− µ| < 3α

0 others
(7)

here φ is the positive value to limit the value of prior in
case it is too close to zero. As for the likelihood item, Similar
to edge points, for a hypothetical d, we first get the set R and
then define the likelihood of R for current d using Laplace
distribution as

El = exp(−β

∑
E(u∗,s∗)∈R

||E(u∗, s∗)− E(u, s)||1

|R|
) (8)

Finally we take the negative logarithm of prior and like-
lihood to get the energy function for the hypothetical d in
unknown point E(u,s) in EPI

E(d) = −log(Ep) +−log(El) (9)

The disparity of E(u,s) can be obtained by minimizing
equation(8). Our method is all operated in a single EPI and
can be parallelized between EPIs. For every pixel in EPI, the
propagation is independent and can be parallelized too. These
attributes make our method computationally efficient. By
combining EPI analysis with semi-global energy minimization,
we get a depth map with precise edge and less noise.

Before evaluating our results, we fixed all the parameters
in our experiments. α=5, φ=0.02, β=10. Though we equally
quantize the disparity into N=256 levels, the maximum dis-
parities vary from different images. as shown in Table 1.
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Fig. 7. Complete comparison with [3]’s result. The upper is [3]’s results
and the lower is ours. Our results preserve better structure with halved time
by introducing semi-global matching framework (red closeup). In complicate
regions, the noise is less due to our weighted winner-take-all strategy at
occlusion(yellow closeup).

For comparison, we reviewed related work on [3]’s dataset.
[10] proposed a high-resolution stereo matching method using
local plane sweeps, however this method is only suitable for
binocular stereo matching. [9] used a statistical analysis frame-
work to reduce the search space and achieved almost the same
speedup as us. However, their method is noisy in textureless
regions. Both methods didn’t provide a complete comparison
on the dataset of [3]. So here we only compare our work with
[3]. As shown in Fig.7, with halved computational time, we
achieve comparable or even better result(In our experiment,the
computational time for orginal paper is 14 minutes to 15
minutes, but for our paper, we only uses 4 minutes to 5
minutes to obtain better results.). From the red closeup of
Statue, the colors of car and building are similar, our method
preserve better structure here since we only reconstruct the
support points at full resolution. Moreover, from the yellow
closeup, our propagation strategy is more smooth than the
method proposed by [3] in complicate regions due to our

weighted winner-take-all strategy at occlusion. To the best
of our knowledge, this is the first work to introduce semi-
global matching into the reconstruction of large-scale light
field images. By semi-global matching, we efficiently reduce
the search space of disparity during propagation. Besides, we
propose a weighted sampling strategy in order to refine re-
construction at occlusion. Combining these two strategies, we
achieve state-of-art results with less computational cost. Our
work also has its limitation, As shown in Fig.7, in Church, the
noise in textureless regions is large due to false estimation at
weak edge. However, no filter is used in our method for visual
satisfaction. The noise will be reduced if we add bilateral filter
to our work, like bilateral median filter used by [3]. Besides,
segmentation-based stereo matching methods achieve state-of-
art results in binocular stereo matching. In following work,
we also plan to combine segmentation with our semi-global
matching framework in light field reconstruction.
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