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ABSTRACT

Depth estimation for the lense-array type cameras is a chal-
lenging problem because of sensor noise and radiometric distortion
which is a global brightness change between sub-aperture images
caused by a vignetting effect of the micro-lenses. We propose a
depth map estimation method which has robustness against the sen-
sor noise and the radiometric distortion. Our method first binarizes
sub-aperture images by applying the census transform. Next, the
binarized images are matched by computing the majority operations
between corresponding bits and summing up the Hamming distance.
An initial map obtained by matching has ambiguity caused by ex-
tremely short baselines among sub-aperture images. We refine an
initial map by the optimization which uses the assumption that the
variations of the depth values in the depth map and of the pixel
values in the texture-less objects are similar. Experiments show that
our method outperforms the conventional methods.

Index Terms— light field camera，Lytro，depth map，census
transform

1. INTRODUCTION

Light field cameras capture the 4D light field of a scene by decod-
ing 2D images. Light field cameras are categorized into two types,
camera-array type and lense-array type, with respect to their system
structures. The camera-array type consists of an array of multiple-
cameras and recovers the 4D light field from images captured by the
cameras [1]. On the other hand, the lense-array type puts an array of
micro-lenses between the single main lens and the image sensor and
recovers the 4D light field from the single image [2]. The single im-
age can be decomposed into sub-images, called sub-aperture images.
The lense-array type has the advantage of system portability. Some
portable products have been released with reasonable price such as
Lytro [3] and Raytrix [4]. Once the 4D light field is obtained, we
can refocus the captured scene and synthesize arbitrary view point
images. To realize those applications, we need to estimate scene
depth from the 4D light field.

Depth estimation for the lense-array type cameras is a challeng-
ing problem [5, 2, 4, 6, 7, 8]. Unlike the camera-array type cameras,
baseline between sub-aperture image pair is extremely shorter. Fur-
thermore, lense vignetting effect on the sub-aperture images is non-
negligible. Therefore, standard stereo matching methods [9] are not
directly applicable as mentioned by Jeonet al. [10].

Recent studies [10, 11, 6] have addressed the problem caused
by extremely short baselines. Jeonet al. [10] used the phase shift
theorem in the Fourier domain to estimate the sub-pixel shifts of sub-
aperture images. Kimet al. [11] aggregated matching costs among
all the sub-aperture images on cost volume to alleviate noise effects.

(a) (b) (c)

Fig. 1. (a) Center view of sub-aperture images taken by the
Lytro camera [3]. (b) and (c) Initial depth map and output
depth map by our method.

The depth estimation framework proposed by Taoet al. [6] is simple
and requires relatively lower computational cost. Their method com-
bines defocus and correspondence cues from light fields. Since these
cues are calculated using a pixel-based measure instead of a window-
based metric, their method has less robustness against noise. In addi-
tion, these cues are affected by radiometric distortion of sub-aperture
images caused by a vignetting effect of the micro-lenses.

In this paper, we propose a depth map estimation method for
lense-array type cameras that has robustness against the radiomet-
ric distortion and the sensor noise. Our method consists of initial
depth map estimation and optimization process. To reduce the in-
fluence of the radiometric distortion caused by a vignetting effect of
the micro-lenses, the proposed method computes the matching cost
in window-based measure for sub-aperture images transformed by
the census transform. In addition, our cost calculation uses the ma-
jority operations to reduce the influence of noise. After initial depth
map estimation, we refine an initial depth map by the optimization
which uses the assumption that the variations of the depth values in
the depth map and of the pixel values in the texture-less objects are
similar. An example of the results of the proposed method is shown
in Fig. 1.

2. REMAPPING SUB-APERTURE IMAGES FOR DEPTH
ESTIMATION

We review depth estimation theory based on Epipolar plane image
(EPI) analysis [12], which is the basic theory behind the proposed
method, for lense-array type cameras in this section.

A lense-array type camera has a micro-lenses array placed on a
regular grid and each micro-lense coversn× n pixels on the image
sensor. A raw image captured by such camera can be decomposed
inton2 sub-aperture images [2]. Letfs denote a sub-aperture image
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Fig. 2. Example of point correspondence in sub-aperture im-
ages. A point corresponding to pixelp in the center view can
be written byp+ sβ for all sub-aperture images.

ands = [u, v]⊤ the relative position of the corresponding micro-
lense on the array relative to the center view imagefc, c = [0, 0]⊤.
Figure 2 shows an example of point correspondence in sub-aperture
images.

To estimate depth from sub-aperture images, we perform a
window-based matching method, as described in Sec. 3.1. Due to
a large number of sub-aperture images, a computationally efficient
matching method is required. Therefore, we perform depth estima-
tion based on EPI analysis. EPI analysis estimates the depth of a
point from orientation patterns observed on an epipolar plane image.
As mentioned above, all the lenses are aligned on a grid and have
the same optical axis. This indicates that the sub-aperture images
can be regarded as images taken by parallel cameras located densely
on a regular grid. This is the reason why EPI analysis is one of
the well-used method to estimate depth map from light field camera
images.

Suppose a point is projected on the pixelp in the center view
imagefc. The corresponding pointps on another sub-aperture image
fs is known to lie on the epipolar linelp,s. Since these two images
fc andfs are taken by parallel cameras, their epipoles are at infinity.
Hence, the epipolar linelp,s is parallel to their baseline as

lp,s(β) = p+ sβ, (1)

whereβ is a disparity. Since the equation (1) holds for any sub-
aperture image, the parameterβ for a 3D point is same among all
sub-aperture images. Thus, we can use the consistency of the pa-
rameterβ to define energy function for depth estimation.

To achieve the search for the optimal value, we remap sub-
aperture images as follows,

fs(p, αp) = fs(p+ sαp), (2)

where fs(p) is a pixel intensity of pixelp, αp is a remap pa-
rameter corresponding to each pixelp andαp corresponds to the
above-mentioned parameterβ. The remapping (2) is similar to [6].
Whereas [6] uses remapped images to shear the epipolar images [12]
for defocus and correspondence analysis, we use them for window-
based matching cost calculation. When all pixels on all sub-aperture
images are remapped with the sameαp, we compute a matching cost
among windows of the same coordinates for all sub-aperture images.
Becauseαp controls the disparity among sub-aperture images,αp

Fig. 3. Examples of census transform.

corresponds to a relative depth value. We calculate a matching cost
while changingαp as follows:

αp = 1− 1

α
, (3)

whereα changes fromαmin toαmax at an interval ofαstep.

3. DEPTH MAP ESTIMATION

Our method first estimates an initial depth map (Sec. 3.1). Next, we
refine an initial depth map by the optimization (Sec. 3.2).

3.1. Initial depth estimation using census transform

Our method first binarizes remapped sub-aperture images by apply-
ing the census transform. Next, a matching cost among these images
is computed using the majority operations between corresponding
bits. Finally, we find the optimal value of remapped parameterαp

that minimizes the matching cost to estimate an initial depth map.
The census transform is a non-parametric local transform, which

was first proposed by Zabih and Woodfill [13]. It computes a bi-
nary string by comparing a center pixel and its neighborhood pix-
els within the local window, as illustrated in Fig. 3. In this paper,
we use a window of size3 × 3. Since the census transform relies
only on magnitude relationship among pixels, it is invariant under
global brightness change. Thus the census transform is suitable for
matching among the sub-aperture images which has the radiometric
distortion caused by a vignetting effect of the micro-lenses.

We transform the target pixelp on remapped sub-aperture image
into binary stringsBs as follows,

Bs(p, αp) = ⊗
q∈Np

ξ(fs(p, αp), fs(q, αp)), (4)

whereNp is the neighborhood ofp within the census window,⊗ is
a bit-wise concatenation operator andξ is the step function defined
as:

ξ(fs(p, αp), fs(q, αp)) =

{
0 if fs(p, αp) ≤ fs(q, αp),

1 otherwise.
(5)

We apply the census transform to the gray image converted from the
RGB color sub-aperture image.

Using binarized images, we compute a matching cost as follows:

C(p, αp) =
∑
s∈S

H(GS(p, αp), Bs(p, αp)), (6)
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Fig. 4. Effect of majority operators. When an image of the
center view is degraded with noise, its corresponding binary
stringsB[0,0]⊤ are unreliable for matching. Using binary
stringGS computed by majority operations is more reliable
than usingB[0,0]⊤ because it can reduce noise effect.

whereS is a set of all sub-aperture images,H is the Hamming
distance function andGS(p, αp) = ϕ(B1(p, αp), ..., Bn(p, αp)).
Here,ϕ is a majority operation which outputs a binary string where
thei-th bit is 1 if more than half ofi-th bits of input binary strings are
1, and is 0 otherwise. Our proposed cost calculation is computation-
ally effective because it simply computes the sum of the Hamming
distance. In addition, it has robustness against noise. Let us consider
the case where five sub-aperture images including the center view
f[0,0]⊤ degraded with noise. Figure 4 shows an example of binary
stringsB of a pixel by applying the census transform to sub-aperture
images remapped withαp which corresponds to true depth. Because
the sub-aperture images are remapped with trueαp, a matching cost
should be small. When the Hamming distance is calculated between
the center view and another sub-aperture image, the matching cost
becomes very high, which results in matching failure. One possible
approach to avoid such failure is to compute matching costs among
all possible pairs of sub-aperture images instead of the pairs of the
center view and another sub-aperture image. This approach, how-
ever, takes much computation time due to a large number of sub-
aperture images. The cost calculation method expressed in (6) is
computationally efficient and has robustness against noise thanks to
using a majority binary string for computation of the Hamming dis-
tance.

After aggregating the matching cost overαp, we select the opti-
mal value ofαp that minimizes the matching cost as an initial depth
value:

Zinit(p) = argmin
αp

C(p, αp). (7)

An example of the initial depth map is presented in Fig. 1 (b).

3.2. Depth map optimization

An initial depth map obtained by (7) has ambiguity caused by ex-
tremely short baselines among sub-aperture images. The depth val-
ues for real scenes have the following two features. First, the values
inside of objects are constant or smoothly change. Second, the val-
ues at object boundary regions may greatly change. We refine an

initial map by the optimization as follows,

Z∗ = argmin
Z

{∑
p

{
Zinit(p)− Z(p)

}2

+ λS

∑
p

{
Dx(Z, p)

2 +Dy(Z, p)
2}+ λB

∑
p

W (Z, p)2
}
,

(8)

whereλS andλB control the weights,Dx(Z, p) andDy(Z, p) cal-
culate the finite difference at pixelp onZ in horizontal and vertical
directions, respectively, andW (Z, p) is a difference filter as follows:

W (Z, p) =
∑
q∈Np

w(p, q)Z(q), (9)

whereNp is the neighborhood ofp within a local window and

w(p, q) =

{
1
M

exp(−dgeo − dphoto) if p ̸= q,

−1 otherwise,
(10)

dgeo =
∥p− q∥22

σ2
s

, (11)

dphoto =
∥fc(p)− fc(q)∥22

σ2
c

, (12)

whereM is the normalization factor satisfying
∑

w(p, q) = 0, fc
is the sub-aperture image of the center view, andσs andσc are geo-
metric and photometric spreads, respectively. Since the optimization
problem in (8) is quadratic inZ, it yields a sparse system of linear
equations.

The optimization of (8) consists of the first fidelity term and the
second and third smoothness terms. The third term derives from the
assumption that the variations of the depth values in the depth map
and of the pixel values in the texture-less objects are similar.

4. EXPERIMENTAL RESULTS

To evaluate output depth map, we perform numerical evaluation ex-
periment. We compared our method with two state-of-the-arts depth
estimation methods, one for stereo camera by Rhemannet al. [9]
and the other for lense-array type cameras by Taoet al. [6]. Since [9]
is standard stereo matching method, we use two sub-aperture images
at the left and right side of the center view as input images. We
used the source code provided by the authors and default parame-
ter setting was used. We use the first generation Lytro camera [3]
which providing 81 sub-aperture images and take scenes consist of
a main object in the foreground regions and the background region.
In our implementation, the parametersα in (3) wasαmin = 0.2 ,
αmax = 2, andαstep = 0.002. We performed (8) withλS = 10,
λB = 10. The parameters in (10) was withσd = 2, σc = 0.02 and
window size7× 7.

We evaluated occlusion boundary instead of the estimated depth
values because it is difficult to obtain the true values of depth in real
scenes. We manually marked occlusion boundary between the fore-
ground and the background in the center view image as the ground
truth of occlusion boundaries. As occlusion boundary detection, we
first take derivative on the estimated depth map and then threshold
the gradient map with a constant thresholding value. As evaluation
metrics, we computed precision and recall between the ground truth
and the detected occlusion boundary.
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(a) Center view

Rhemann et al. [9] Tao et al. [6]

(c) Estimated depth map

Ours

(e) Center view

Rhemann et al. [9] Tao et al. [6]

(g) Estimated depth map

Ours

(b) Ground truth

Precision:0.23
Recall:0.17

Precision:0.47
Recall:0.19

(d) Detected occlusion boundary

Precision:0.60
Recall:0.66

(f) Ground truth

Precision:0.06
Recall:0.07

Precision:0.26
Recall:0.27

(h) Detected occlusion boundary

Precision:0.53
Recall:0.38

(i) Center view

Rhemann et al. [9] Tao et al. [6]

(k) Estimated depth map

Ours

(m) Center view

Rhemann et al. [9] Tao et al. [6]

(o) Estimated depth map

Ours

(j) Ground truth

Precision:0.08
Recall:0.17

Precision:0.47
Recall:0.47

(l) Detected occlusion boundary

Precision:0.54
Recall:0.58

(n) Ground truth

Precision:0.02
Recall:0.16

Precision:0.66
Recall:0.35

(p) Detected occlusion boundary

Precision:0.65
Recall:0.86

Fig. 5. Depth map result comparison.

Figure 5 shows the results with four scenes,TREE, LEAF,
FLOWER andPLATE cases. Each scene consists of a main object in
its foreground region as shown in Fig. 5 (a), (e), (i) and (m). Note
that Figure 5 (a), (e), (i) and (m) is the image amplified the bright-
ness of the original image to clearly display it. The sub-aperture
images ofLEAF case include signal noise caused by high ISO sen-
sitivity. The sub-aperture images ofPLATE case consist of three
plates which have different depth. Figure 5 (b), (f), (j) and (n) show
the manually obtained ground truth that has occlusion boundary on
the border of the foreground object. The estimated depth map and
occlusion boundary are shown in Fig. 5 (c), (g), (k) and (o) and Fig.
5 (d), (h), (l) and (p) respectively.

Contrast to the conventional methods [9, 6], our depth map
exhibits higher performance visually. The method of Rhemann
et al. [9] exhibits lower performance because of the short baselines
of sub-aperture images. Although the method of Taoet al. [6]
exhibits a high precision by combining advantage of the correspon-
dence and defocus cues, it exhibits a low recall as compared to the

our method. Because [6] has less robustness against the sensor noise
and the radiometric distortion. As shown inLEAF case of high ISO
condition, our method produces satisfactory result.

5. CONCLUSIONS

In this paper, we proposed a depth map estimation method which
has robustness against the sensor noise and the radiometric distor-
tion. To reduce the influence of the radiometric distortion caused
by a vignetting effect of the micro-lenses, we used sub-aperture im-
ages binarized by the census transform for matching. Since we used
majority operators in the cost calculation, our method has robust-
ness against the sensor noise. Experiments showed that our method
outperforms the conventional methods.
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