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ABSTRACT

Light field cameras have been recently shown to be very effec-
tive in applications such as multifocusing and 3D reconstruc-
tion. These cameras can provide depth cues from both defo-
cus and correspondence in a single snapshot. In this paper,
we present a fast response aggregation framework for depth
estimation by jointly using defocus and correspondence cues.
Different from existing approaches, we perform a fast gra-
dient preserving filtering in a label domain, instead of in a
depth domain, to efficiently compute a dense depth map. The
proposed approach comprises of three steps: 1) constructing
defocus and correspondence response volumes, 2) adaptively
smoothing the two volumes and performing Winner-Takes-
All label selections, and 3) post-processing by using nonlocal
image guided averaging. With such a compact framework,
currently best depth estimation results can be achieved. This
compact framework is suitable for various applications such
as object segmentation and surface reconstruction.

Index Terms— depth estimation, light-field, response ag-
gregation

1. INTRODUCTION

The concept of light-field cameras has been proposed by
Adelson and Wang [1] over twenty years ago. Ng et al. [2]
are the first to introduce the prototype of micro-lenses array
light-field camera, which provides a multiple-view of a scene
in a single snapshot, recording the distribution of light rays
in space. As explained in [2], we can refocus images by
shearing the epipolar image (EPI) extracted from light-field
data to achieve many multiple-views focused at different
depths. Therefore, we can calculate depths from defocus and
correspondence cues simultaneously.

How to accurately estimate depth from defocus and cor-
respondence cues has been extensively studied. Schechner
et al. [3] and Vaish et al. [4] have discussed the strengths and
weaknesses of each cue. Generally speaking, the defocus cues
are good at repeating textures and noisy regions, while corre-
spondence cues have better performance in bright points and
features. Most existing work on depth estimation only exploit
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Fig. 1. Depth estimates from light-field image. (a) the central
view, (b) result of [5], (c) result of the proposed method.

one cue or another, since it is difficult to acquire and combine
both cues in the same framework.

With the emergence of light-field camera, it becomes
easy to exploit defocus and correspondence cues jointly for
depth estimation. Recently, Tao et al. [5] combine the two
cues to estimate dense depth map. They present the defocus
and correspondence measures for different shear angles of
EPI, and adopt Markov Random Fields (MRF) [6] to fuse
both cues according to confidence measures introduced by
Hirschmuller [7]. However, in regions where both cues show
low confidence, their depth estimates degrade significantly.
In addition, due to the lack of edge-preserving property in
postprocessing, their results tend to be blurry at edges.

In this paper, we propose a fast response aggregation
framework for depth estimation by jointly using defocus and
correspondence cues. This framework is shown in Fig. 2.
We first construct defocus and correspondence response vol-
umes, and apply an image guided filtering on them. Then,
the Winner-Takes-All strategy is used to obtain the initial
depth estimates. Finally, we utilize nonlocal image guided
averaging (NLGA) [8] to preserve sharp depth edges in post-
processing. This proposed approach can produce high-quality
depth estimates with sharp edges, as shown in Fig. 1, which
enable applications such as object segmentation and surface
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Fig. 2. The pipeline of the proposed algorithm. We first construct defocus and correspondence response volumes according to
the sheared EPI. Then, we smooth the volumes by image guided filter, and use Winner-Takes-All strategy to obtain the initial
depth maps. Next we combine defocus depth map with correspondence one. Finally we use NLGA to refine the combined
depth map.

reconstruction.

2. ALGORITHM

The pipeline of the proposed algorithm is shown in Fig. 2.
Similar to [5], we first construct the defocus and correspon-
dence response volumes by shearing EPI. Different from their
method, we first filter each slice of response volumes under
the guidance of central view image. Then, the depth estimates
from the above response volumes are determined in a winner-
take-all fashion, respectively. Next, we average the estimates
for pixels passing the validity-check. We adopt weighted me-
dian filtering method to fill the invalid pixels. At the end, we
utilize NLGA to refine the outputs.

2.1. Response Volume Construction

A light-field image after decoding are presented in the left of
Fig. 3. It consists of serval sub-images, that are captured in
a single snapshot but with different view points. Fig. 3 also
explains the concept of EPI. We first stack all images along
a line of view points (denoted by red rectangle block), then
cut through the stack (denoted by yellow line), forming a cut
plane (denoted by yellow rectangle block) called an epipolar
plane image (EPI). The rich structure (denoted by color lines
within the yellow rectangle block) emerges in the EPI.

For simplicity, we explain the proposed algorithm on 2D
EPI shown in Fig. 3 (Note that we implement our algorithm
on 4D EPI). Ng et al. have demonstrated how to shear the EPI
to achieve refocus in [2].

Lα(x, µ) = L0(x+ s(1−
1

α
), s), (1)

whereL0 denotes the input EPI,Lα denotes the shearing an-
gular value,x represents the spatial domain ands represents
the view domain. L̄α is the average of sheared EPI across
the view dimensions, which can be interpreted as the refo-
cused image under shearing valueα. The refocus processing
is presented in Fig. 3.
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Fig. 3. A light-field image after decoding. It consists of ser-
val sub-images presented in the left side, that are captured
in a snapshot but with different view points. A cut (denot-
ed by yellow line) through the stack of sub-images along one
horizontal dimension (denoted by red rectangle block), form-
ing a cut plane (denoted by yellow rectangle block) called an
epipolar plane image (EPI). The rich structure (denoted by
color lines within the yellow rectangle block) emerges in the
EPI. Shearing EPI means to refocus image shown in the right
bottom.

In [5], Tao et al. have presented two effective measures to
describe defocus and correspondence responses. They treat
the spatial variance of EPI integrated across the view dimen-
sion as the defocus measureDα(x).

Dα(x) =
1

|WD|

∑

x′∈WD

∣

∣∆xL̄α(x
′)
∣

∣, (2)

whereWD is the window size around the current pixel, and
∆x(x) is the Laplacian operator. Besides, they regard the
view variance as the correspondence measureCα(x).

Cα(x) =

√

1

Nu

∑

u′

(Lα(x, u′)− L̄α(x))
2

(3)

Also, they averageCα(x) by Wc size window for greater ro-
bustness. According to Eqn. 2 and Eqn. 3, for each pixel in the
image, we can measure defocus and correspondence respons-
es for each shearing angular valueα. Then we can construct
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Fig. 4. The depth maps before and after smoothing response
volumes. For the depth map, the lighter pixels are regarded as
closer point in scene to the camera and darker as father. (a) is
center view, (b) and (c) are the defocus depth maps before and
after smoothing respectively, (d) and (e) are the correspon-
dence depth maps before and after smoothing respectively.

the response volume that is a 3D array which stores the re-
sponses for a certain shearing valueα at pixelx. Noticed that
the sheared valueα is discrete.

2.2. Fast Response Volume Filtering

The optimal shearing angular valueα implies the true depth
information. For defocus cues, the optimalα∗

d (x) can be
found by locating the largest response, and for correspon-
dence cues,α∗

c (x) can be found by locating the smallest re-
sponse.

α∗

d (x) = argmax
α

Dα (x) , (4a)

α∗

c (x) = argmin
α

Cα (x) , (4b)

The above problem is a typical multi-label problem. Hos-
ni et al. proposed a simple framework to achieve high-quality
solutions for general multi-label problems [9]. In their work,
the resultant label is effectively smoothed by a very fast edge
preserving filter [10], where the label transitions are aligned
with color edges of the input image. Similar to their method,
we propose to smooth the response volumes and then find the
optimal angle in a winner-take-all fashion. For each slice of
the response volume, we smooth it under the guidance of cen-
ter view image.

V ′

i,α =
∑

j

Wi,j(I)Vj,α, (5)

whereV represent the response volume,i andj are pixel in-
dices. The filter weightsWi,j is calculated from the guidance
imageI as follows.

Wi,j =
1

|Ω|2

∑

k:(i,j)∈Ωk

[

1 + (Ii − µk)
T (Σk + εU)−1 (Ij − µk)

]

,

(6)

(a) (b) (c) (d) (e) (f)

Fig. 5. (a) and (d) are the central view, (b) and (e) are the
combined depth map where black pixel refers to the invalid
value which need to be filled by reliable neighbor value, (c)
and (f) are the results refined by weighted median filter and
NLGA.

Here,µk andΣk are the mean vector and covariance of
I in a squared windowΩk centered at pixelk. U denotes
the identity matrix and is a smoothness parameter.|Ω| is the
number of pixels inNk. We recommend referring to [10] for
further details.

The comparison of the depth maps before and after s-
moothing is shown in the Fig. 4. It can be easily seen that
most of the outliers have been eliminated.

2.3. Combination and Refinement

After the processing steps as outlined above, we obtain two
depth estimates from two different cues. However, they may
be inconsistent in some regions, as shown in regions enclosed
by the color circles in Fig. 4. To overcome this problem, we
use a validity-check technique to assign binary validity val-
ue for each pixel. For each pixel, if the difference between
two depth estimates is smaller than a threshold, the validity
value is assigned to be 1, otherwise 0. For pixels passing the
validity-check, we compute the average of the two estimates
as the initial depth value. Fig. 5(b) and Fig. 5(e) show the ini-
tial depth map after validity-check. For the invalid pixels, we
adopt weighted median filtering method to fill them [9].

Then, we use NLGA filter to refine the filling result to
smooth the remaining residual artifacts. NLGA is an edge-
preserving filtering method developed recently and is able
to exploit the nonlocal self-similarity of the guidance image.
The explicit form of the filter kernel weight can be formulated
as:

Wi,j =
∑

k:(i,j)∈Ωn

k

wikwkj×

[

1 +
(

Ik − Iw (Ωn
k )
)T

(Σk,w + εU)
−1

(

Ij − Iw (Ωn
k )
)

] ,

(7)
whereΩn

k represents the nonlocal neighborhood of pixeli,
wij is the nonlocal weight.Iw (Ωn

k ) andΣk,w are the weight-
ed mean vector and covariance matrix inΩn

k . The refinement
results are shown in Fig. 5(f).
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Fig. 6. The comparison between our results and Tao et al.’s.
(a) is the central view, (b) is the occlusion boundaries marked
by user manually, (c) presents Tao et al.’s results, (d) presents
our results. The value under each depth map is AUC value.

3. RESULTS AND ANALYSIS

In this section, we explore the potential of the proposed algo-
rithm based on light-field images released by [5]. The com-
parison between our results and that of Tao’s are shown in
Fig. 6. In our implementation, we adopt the same parameter-
s as those reported in [5], when we construct the response
volumes.

For quantitative comparison, we evaluate the performance
of depth map in terms of occlusion boundary detection by
calculating the area under the receiver operating characteris-
tic (ROC) curve, i.e. the AUC value. Here, we regard the
occlusion boundary detection as a classifier and the gradien-
t of depth maps as the classification results. Given a certain
threshold, the points above the threshold are classified as pos-
itive and the others as negative. For any threshold, true and
false positive rate are obtained. By varying the threshold at
some intervals within the maximum range, the ROC curve
can be plotted and the area under the curve (AUC) can be cal-
culated. The depth map with larger AUC has superior quality.

According to AUC evaluation, the proposed scheme out-
performs Tao et al.’s in terms of occlusion boundary detection.
As seen from Fig. 6, the surface of the foreground leaf, and
the background of chord are consistent. Visually, the edge
of leaf in calabash is sharper. For the shoes example, though
the AUC measures are close, our results have better visual ap-
pearance, since the proposed scheme removed the unexpected
textures.

We also show that the proposed scheme produces high-
quality depth maps that can be used for object segmentation
and surface construction.

Object Segmentation.With a simple stroke, we can ex-

(a)

(b) (c) (d)

(e) (f)

Fig. 7. Two applications. (a) the center view, (b) object seg-
mentation by matting method [11], (c) object segmentation
by using Tao et al.’s depth map (d) object segmentation result
by using the proposed method’s depth map, (e) surface con-
struction by using our depth map, (f)surface construction by
using Tao et al.’s depth map. The second row presents each
segmentation’s matte that the white regions indicate the fore-
ground object.

tract objects with more accurate boundaries by using depth
map, as shown in Fig. 7. Apparently, the depth map we ob-
tained is helpful to reduce the ambiguity that comes from
color space, and produce shaper boundaries compared with
Tao’s.

Surface Construction. We can remap the pixels into
3D space to achieve surface reconstruction according to the
obtained depth map, as shown in Fig. 7.

4. CONCLUSIONS

In this paper, we propose a fast response aggregation frame-
work for depth estimation by jointly using defocus and cor-
respondence cues. High quality depth maps can be achieved
by filtering each cue’s response volume. The validity-check
processing is able to preserve the consistent estimates andex-
clude others. The pixels fail to pass validity-check are filled
via a weighted median filtering method. High-quality depth
estimates with sharp edges can be obtained by using NLGA
filtering method to refine the filling results. Finally, the visual
inspection and quantitative assessment confirm the effective-
ness of the proposed method. The depth maps obtained from
this compact framework is able to lead to improved perfor-
mance in two applications.
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