RELATIVE LOCATION FOR LIGHT FIELD SALIENCY DETECTION
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ABSTRACT

Light field images, which capture multiple images from
different angles of a scene, have been proved that can detect
salient regions more effectively. Instead of estimating depth
labels from light field images, we proposed to extract relative
locations, which can distinguish whether the object is located
before the focus plane of the main lens or not, for saliency
detection. The relative locations are calculated by compar-
ing raw light field images captured by plenoptic cameras and
central views of scenes. The relative locations are then inte-
grated to a modified saliency detection framework to obtain
the salient regions. Experimental results demonstrate that the
proposed relative locations can help to improve the accura-
cy of results, which is also efficient. Moreover, the modified
framework outperforms the state-of-the-art methods for light
field images saliency detection.

Index Terms— Light field, Saliency detection, Relative
location, Raw image, Plenoptic camera

1. INTRODUCTION

Since saliency detection technology has been well develope-
d these years, extracting salient objects from different kinds
of images has also attracted much attention. Except the col-
or, shape, and texture information acquired from traditional
cameras, the structure information calculated from Kinect or
binocular camera has been proved that can better improve the
saliency detection results [1, 2, 3].

However, it used to be difficult to capture structure infor-
mation of a scene for saliency detection until handheld light
field cameras, e.g. Lytro [4] and Raytrix [5], appeared. Due
to the optic construction, this kind of camera is able to capture
the scene from different continues angels in one shot. There-
fore, light field images contain structure information which
can be extracted easily for further processes.

Saliency detection from light field images has been stud-
ied by Li et.al recently, which effectively proved that light
field images are able to detect salient objects in complex en-
vironments [6]. Similar to saliency detection using binocular
images, depth maps are needed during the saliency detection
calculation in their work. Although the depth estimation from
light field images has been a historical problem for a long
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time, and various advanced technologies have been proposed,
it is still a demanding problem for saliency detection.

Different from Li et.al [6] and other saliency analysis on
stereoscopic images [7, 1], we proposed to use the inheren-
t structure information in light field raw images for saliency
detection. Instead of figuring out the accurate depth value of
each pixel in the image, we develop a new feature, the rel-
ative location, to distinguish objects locations related to the
focus plane. The proposed feature can be calculated directly
from the raw images of plenoptic light field cameras. More-
over, we modified the traditional saliency detection work [8]
to utilize the extracted feature and achieve comparable results
compared with the state-of-the-arts methods.

2. RELATED WORK

The saliency detection from light field involves how to extract
depth cues from the images and how to integrate these cues
with color, textures and other features for saliency analysis.
Some prior work has been well studied.

2.1. Saliency detection using depth cues

The work about how to leverage depth to facilitate the salien-
cy analysis has been discussed in [1, 2, 3]. The dataset in-
cludes RGBD images from Microsoft Kinect and binocular
cameras. Depth information of the binocular images is calcu-
lated in advance using the common depth estimation methods
[9]. Their work focused on how to integrate the depth cues
with appearance cues for saliency estimation and proposed
the depth hypothesis reasonably and accurately. However, the
process of depth cues is still complex and time-consuming for
the saliency detection.

2.2. Depth estimation from light field

Recently, some depth estimation methods have been devel-
oped specially for light field images [10, 11]. Some meth-
ods are designed based on stereo matching [11, 12] which
use the extracted multi-views from light field. Besides, depth
maps can also be calculated by measuring the focusness of
each refocused image [13] from light field images. However,
both methods rely on the assumption of discrete depth labels,

ICASSP 2016



p<=ll==E =

Fig. 1. The real light field images(raw images and images
under each micro-lens) and the optical diagram. If the scene
is behind the focusing plane, the micro-lens image is inverted
compared with the scene view. If the scene is before the fo-
cusing plane, it is similar with the scene view. If the object is
located at the focusing plane, it shows the consistent color.

which is still a time-consuming progress. Moreover, due to
the heavy noises and spatial aliasing [14] in plenoptic light
field images, the depth is more difficult to estimate.

2.3. Saliency detection for light field

The saliency detection for light field images is first proposed
in [6]. They first calculate the focus stack using the refocus
theory [13], and then estimated in-focus regions in every im-
age. Depth maps are then obtained, and combined with the
objectness to estimate the foreground likelihood and back-
ground likelihood. Their work proves that the additional in-
formation in light field images can contribute to saliency de-
tection. However, the refocusing process and the in-focus re-
gion estimation needs to be calculated a lot of times to acquire
the final depth map.

In contrast, our approach does not try to calculate the ac-
curate depth map. Instead, we develop a simple method to u-
tilize the structure information specific to light field image for
saliency detection. The relative locations, with respect to the
focused plane of the main lens, are calculated directly from
the raw images and integrated to acquire the saliency results.

3. RELATIVE LOCATION EXTRACTION

In this paper, L(z, y, u, v) is used to parametrize the 4D light
field, where (u,v) is the coordinate of the main lens plane
and (z,y) is the coordinate of the image in different views. In
this section, we try to extract the relative location relationship
which is sufficient to distinguish the background and fore-
ground in saliency detection.

3.1. Background and foreground filters

Due to the construction of the camera, the image under each
micro-lens is closely related to the position in the scene. As
shown in Fig.1, the optical diagram and the real images both
show the relationship between images under micro-lens and
scene views. Specifically, if the scene is before the focusing
plane, the micro-lens image is similar with the scene view. On
the contrary, it is inverted compared with the scene view. If
the object is located at the focusing plane, the micro-lens im-
age shows the consistent color of the same point in the scene.

Based on the observations, we construct a specific feature
to present whether the point is before, behind or just on the
focusing plane of the main lens. In particular, we build two
filters, foreground filter Wy and background filter W5, to e-
valuate the possibilities of the points position. We modified
a general linear filter as the popular bilateral [15] or guided
filter [16] to acquire the location information. The proposed
filter treats a view image I, as a guidance image, the raw light
field image I, as an input image. The foreground filter W is
constructed according to the view image I, :

|Iv(pj) - Iv(pi)|2)
262 ’

wl = exp(—

! (1)
where I,,(p;) is pixels in a window around I,,(p;) in the view
image. In this paper, we set the window size equal to the
size of the micro-lens for convenient calculation in the filter-
ing process. The experiments in the realistic scene prove that
the window size is insensitive to most of the depth ranges.
The background filter W is set as the transpose of the W/
accordingly.

The output image after filtering is then expressed as a
weighted average of every single micro-lens image in the raw
image I, :

I(q;) = ZWij(Iv)<Ir(pj) - L(pi))?, 2

where p; is the center pixel of each micro-lens image and p; is
pixels in the same micro-lens. g; is the corresponding output
which has the same size as the view image.The two filters are
applied to the raw images and the filtered images I and I°
are obtained.

3.2. Relative Location

As we analyzed before, if the point is behind the focusing
plane, the micro-lens image is more similar with the inverted
view image, which means 7 is larger than I°. On the con-
trary, if the object is before the focusing plane, I/ is smaller
than I°. If the object is located at the focusing plane, I/ has
the approximate value as I°.

In order to remove noises and propagate the credible in-
formation, we filter the I and I° using guided filter [16], and
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then the relative location is defined as:

JE
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where L > 0 indicates the point is more likely behind the
focusing plane, L < 0 means it is before the focusing plane,
and L ~ 0 means it is located on the focusing plane.

4. SALIENCY DETECTION

In this section, we show how to integrate the extracted relative
location with the color information to obtain the final salien-
cy map. First, we segment the reference image into a set of
superpixels using mean-shift algorithm [17]. The relative lo-
cation cues are normalized and then computed as the average
value of all pixels within a region (p).

4.1. Background Selection

In the recent state-of-art saliency detection method, Zhu et.
al[8] assumes that the salient objects are much less connected
to image boundaries than background ones. In order to detect
salient objects in complex backgrounds, we add the relative
location cues in the modified method.

An undirected weighted graph is first constructed. Al-
1 adjacent superpixels (p, q) are connected and their weight
d(p, q) are assigned as the Euclidean distance between their
average colors and relative location. The boundary connec-
tivity is defined:

BndCon(p) = £emalp) @)

Area(p) ’

where the definition of Leny,q(p) is the length along the
boundary and Area(p) is a soft area that p belongs to, as de-
fined in [8]. The difference with their work is that the d(p, q)
used in Leny,q(p) and Area(p) does not only consider the
color information, but also fuse the location information,
which can effectively connect the background to the image
boundaries whether the color of the background is complex,
or the depth of the background is changing. Then the possi-
bility of the background is defined as:

B BndCon?(p;)
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where opn4c0n 1S used for adjusting boundary connectivities.

4.2. Contrast Selection
Similar with [8], we defined the contrasts of objects as:

N
szg = Z d(p, Q)wspa (papi)wfglArea (p), (6)

i=1

where [ 4req(p) is a added term for averaging locations in the
soft area Area(p), which has a large value when the area is
close to the camera. The other definitions can be found in [8].

Most RGBD saliency detection work defines that objects
close to the camera are more likely to be salient. This assump-
tion is partly correct except in two scenes. Firstly, the overall
location of the object is close to the camera but is connected
to the image boundaries. Secondly, the depth of the object
is changing sharply, e.g. the ground or the flat desktop. Due
to the added relative location cues, the above problems can
be easily solved. If the overall location of one object is close
to the camera and the boundary connectivity is large, the wf g
will be large. Besides, if the depth of the object is changing
sharply, [ 4, is averaged to be relatively lower than the other
objects. As a result, only objects which are relatively close to
the camera and also far away from the image boundaries are
set at a large contrast.

Finally, the saliency map is obtained by minimizing the
cost function using least-square:

N N
DowisE 4y Wl s =17+ wilsi—s)” (D
i=1 i=1 ij
where w; ; is the smoothness part and can be found in [8].

5. EXPERIMENT

In this section, a dataset of 100 light field images [6] is used to
evaluate the proposed method. We compare our method with
state-of-the-art salience detection methods desgined for light
field image (LF [6]), RGBD images (ACD [7], LS [1]) and
traditional RGB images (RB [8], BL [18], DSR [19], GS [20],
MR [21], SF [22]). Our experimental results are evaluated
with both relative location cues (RD) and depth maps (D) to
show the effectiveness of the relative location cues and the
proposed saliency detection method. The depth maps used for
RGBD salince detection are calculated using the depth from
focusness method [23], which are also released in dataset [6].

The visual examples are shown in Fig. 2. We can observe
that the relative location cues are able to distinguish the out-
standing objects clearly and highlight the salient parts. Com-
pared with LF [6], the salient parts are more outstanding be-
cause of the simple relative location. We can also verify the
effectiveness of the modified saliency detection method by
using the RGBD images, as comparing with ACD [7] LS [1].

We also calculate the precision-recall curve in Fig.3 to
show the similarity between the detected salience map and
the ground truth. We binarize the saliency map at each pos-
sible threshold with in [0, 255]. As we can see in the figure,
the proposed method using RGBD images achieves a slightly
higher recall rate compared with using the relative location
cue beacuse of the more precise depth information. Howev-
er, it needs more complex calculation and we can choose the
proper method according to the system requirement.
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Fig. 2. Precision recall curve comparision with state-of-the-art methods.
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Fig. 3. Comparison of our saliency maps with state-of-the-art
methods.

6. CONCLUSION

Taking into account the special structure of the light field im-
ages, we propose a novel relative location cues to extract the
salient parts of an image. The relative location is calculat-

ed on the raw images, which is simple and effective. Based
on the locations with respect to the focused plane, we can
extract the salient regions using a modified saliency detection
method. Compared with the state-of-the-art methods, the pro-
posed method is able to detect saliency more precisely as well
as simply. Moreover, the proposed saliency detection frame-
work is also proved to be adapted to the RGBD images.
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