
DEPTH-AWARE SALIENCY DETECTION USING DISCRIMINATIVE SALIENCY FUSION 
 

Hangke Song1, Zhi Liu1,*, Huan Du1, 2 and Guangling Sun1 
 

1School of Communication and Information Engineering, Shanghai University, Shanghai, China 
2The Third Research Institute of Ministry of Public Security, Shanghai, China 

 
 

ABSTRACT 

  
In this paper, we propose a multi-stage depth-aware saliency 
model for salient region detection. We evaluate saliency on 
different features at low, mid and high levels, by taking 
account of primary depth and appearance contrasts, different 
feature weighted factors and location priors, respectively. 
Unlike most existing depth-aware saliency models that use a 
linear or experiential fusion formula to combine saliency 
maps from different features, we calculate saliency of each 
feature individually at each level and learn a discriminative 
saliency fusion (DSF) regressor based on random forest to 
estimate the saliency measures of regions. Both subjective 
and objective evaluations on two public datasets designed 
for depth-aware saliency detection demonstrate that the 
proposed saliency model consistently outperforms the state-
of-the-art saliency models on saliency detection performance. 
 

Index Terms—Depth information, multi-level saliency 
detection, discriminative saliency fusion, random forest. 
 

1. INTRODUCTION 
 

Saliency detection aims to detect the attractive objects to 
human viewers in an image. Visual attention is important for 
the understanding of vision and cognition processes, and two 
mechanisms of visual attention are usually distinguished: 
bottom-up and top-down. A great number of saliency models 
for 2D images have been proposed to effectively exploit 
bottom-up attention and top-down attention since the 
seminal work [1], which was mainly used for human fixation 
prediction. Recently more and more saliency models are 
proposed for salient object detection with the better 
performance such as [2]-[5]. 

With the prevalence of stereo cameras, depth cameras 
and Kinect sensors, a few tentative researches have shown 
that the depth information could be powerful in addition to 
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color images for saliency analysis. There are two main 
sources of depth information: the depth map directly 
captured for a single image, and the disparity map estimated 
from stereoscopic images. Depth features extracted from the 
depth/disparity map can be directly used for measuring 
saliency, and an integration of depth-induced saliency with 
the saliency estimated from RGB image is a common 
paradigm of depth-aware saliency models as summarized in 
[6]. In [7], the anisotropic center-surround difference on the 
depth map is utilized to measure saliency. In [8], the depth 
saliency estimated from point cloud data is integrated with 
the saliency of RGB image using nonlinear regression. In [9], 
a saliency model for stereoscopic images exploits the global 
contrast on disparity map and domain knowledge in 
stereoscopic photograph to generate saliency map. In [10], 
both depth weighted color contrast and depth contrast are 
exploited to measure saliency. In [11], the primitive depth 
and color contrasts are refined by depth-based object 
probability and region merging for saliency measurement. 

However, the existing depth-aware saliency models 
share the following two common limitations. First, they 
rarely involve top-down information, which can be exploited 
via machine learning to effectively improve the saliency 
detection performance. Second, as a critical step, the 
combination of saliency maps on different features including 
depth and appearance is usually performed through a simple 
linear or experiential fusion formula rather than a more 
discriminative and adaptive fusion. To address the above 
two limitations, this paper proposes a new depth-aware 

Fig. 1. Illustration of the proposed model. 
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saliency model using discriminative saliency fusion. The 
framework of the proposed model is presented in Fig. 1. 
Saliency maps on different features at low, mid and high 
levels are calculated by taking account of primary depth and 
appearance contrasts, different feature weighted factors and 
location priors, respectively. Further, a discriminative 
saliency fusion (DSF) regressor based on random forest is 
learned from the training samples to discover the most 
discriminative saliency maps from the three levels and 
adaptively integrate them to obtain the saliency measures of 
regions. Experimental results show that the proposed model 
achieves the better saliency detection performance on both 
RGBD images and stereoscopic images. 

The rest of this paper is organized as follows. Section 2 
describes the proposed saliency model. Experimental results 
are presented in Section 3, and conclusion is given in 
Section 4. 
 

2. PROPOSED SALIENCY MODEL 
 
2.1. Low-level saliency 

 
Each RGBD image can be decomposed into a color image 
and a gray-level depth map. Based on the color image, the 
gPb-owt-ucm [12] method is used to obtain the primitive 
segmentation result with approximately 200 regions as 
illustrated in the second column of Fig. 1. In most RGBD 
images, salient object regions usually show noticeable 
feature contrast with background regions. Thus the 
commonly used low-level center-surround contrast can still 
work as a fundamental principle of saliency detection. To 
obtain a group of low-level saliency maps, we take into 
account multiple low-level regional features including color, 
depth, texture and geodesic distance. The details of these 
features are as follows (along with the number of features in 
the parenthesis): Average color of each channel and 
histograms in the RGB, HSV and L*a*b* color spaces (12); 
average depth value and histogram (2); texture features 
including absolute responses (15 2 ) and their histograms 
(1 2 ) of 15 LM filters [13], HOG [14] histograms (1 2 ) 
and LBP [15] histograms (1 2 ); Geodesic distance [16] 
(1 2 ). Note that the texture and geodesic distance features 
are extracted on both color image and depth map, and thus 
the numbers of corresponding features are with a 
multiplication factor of two, “ 2 ”. In total, the number of 
features for low-level saliency computation is 52. 

With the above low-level features, low-level saliency 
(LS) of each region iR  based on the kth feature contrast is 

evaluated with respect to the global image and the image 
border, respectively, as follows: 
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where G  is the set of all regions in the image, and B  is the 
set of border regions with a distance to the nearest image 

border less than 20 pixels. ,
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i jD  is the chi-square distance for 

features with the form of histogram or the Euclidean 
distance for features with other forms, on the kth feature 
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k
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where jR  denotes the number of pixels in jR , L  denotes 

the diagonal length of image, ic  denotes the spatial center 

position of iR , and the coefficient   is set to a moderate 

value, 0.3, to control the influence of spatial distance 
between regions. Since the low-level saliency is evaluated 
on a total of 52 features with respect to the global image and 
image border, respectively, we obtain for each region iR  a 

104-dimensional low-level saliency vector LS
iv .  

 
2.2. Mid-level saliency 
 
It is verified that the salient object usually has certain 
relationship with its depth levels [8]. Besides, the geodesic 
distance [16] is a simple yet effective feature indicating 
salient regions directly. Thus the mid-level saliency (MS) is 
evaluated based on low-level saliency with feature weighting 
factor from depth or geodesic distance as follows: 

    / , /exp ,k k k
G B DP i i G B DMS R d LS f     ,         (3) 
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G B DG i d i G B DMS R Geo R LS f    ,         (4) 

    / , / ,k k k
G B CG i c i G B CMS R Geo R LS f    ,         (5) 

where  / ,
k
G B DP iMS R  is the depth weighted mid-level 

saliency. id  is the mean depth value of iR , and the term 

 exp   indicates that the close regions tend to receive more 

visual attention.  / ,
k
G B DG iMS R  /  / ,

k
G B CG iMS R  is the 

depth/color geodesic distance weighted mid-level saliency, 

 d iGeo R /  c iGeo R  is the depth/color geodesic distance, 

and D / C  is the set of features involving depth/color 

information mentioned in Section 2.1, and such a cross 
weighting in Eqs. (3)-(5) enables these saliency measures to 
comprehensively utilize depth and color information. The 
above three types of weighted saliency measures for each 
region iR  constitute a 166-dimensional mid-level saliency 

vector MS
iv . 
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2.3. High-level saliency 
 
In addition to the feature contrast, some high-level location 
priors are also important in identifying salient regions. In 
most RGBD images, background regions generally have a 
higher ratio of connectivity with image borders than salient 
objects. Based on this observation, the location-based object 
prior (OP) for each region iR  is defined as follows: 

max

1 exp( )
/ 2

i i
i

NB SDC
OP

NB L

   
    
   

,              (6) 

where iSDC  denotes the Euclidean spatial distance from the 

center position of iR  to the image center position. iNB  is 

the number of image border pixels contained in iR , and 

among all regions touching the image border, maxNB  is the 

maximum number of image border pixels contained in a 
region. The coefficient   is set to 0.25 for a moderate 

attenuation effect on location priors of those regions 
touching image borders. 

To obtain the high-level saliency (HS) for each region 

iR  based on the kth feature contrast, we exploit the kth 

feature difference between iR  and jR  to assign similar 

location saliency measures to regions with similar values on 
the kth feature as follows: 
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where max
kND  is the maximum of ,

k
i jD  between all the region 

pairs. In summary we obtain for each region iR  a 52-

dimensional high-level saliency vector HS
iv . 

 
2.4. Discriminative saliency fusion 
 
After calculating regional saliency measures on various 
features at the three levels as shown in the third column of 

Fig. 1, we obtain a 322-dimensional saliency vector for each 
region. Unlike most existing depth-aware saliency models 
that use some linear or experiential fusion formula to 
combine saliency measures on different features, we aim to 
integrate the saliency measures on different features at 
different levels in a discriminative way by automatically 
discovering the most discriminative ones. 

Besides, we consider some regional properties to better 
combine saliency measures. For each region iR , we obtain a 

123-dimensional auxiliary property vector RP
iv  including the 

absolute values and variances of features (111) in Section 
2.1, and the geometric features (12) in [5]. As a result, each 
region iR  is represented by a 445-dimensional saliency 

vector consisting of multi-level saliency measures and 
auxiliary regional properties. We integrate them together in 
a discriminative way, where F  is a DSF regressor based on 
random forest, to obtain the final regional saliency iRS  as 

shown as the fourth column of the example in Fig.1.  
The learning procedure for the DSF regressor F  is 

detailed in the following. First, we randomly select 500 
images with binary ground truths of salient objects from the 
RGBD-1000 dataset [6] as the training images. Multi-scale 
segmentation is performed on each training image to 
generate training samples. We use the gPb-owt-ucm method 
[12] on the color image to generate the real-valued 
ultrametric contour map (UCM), which indicates for each 
pixel the likelihood of being a true boundary. Then we set 
two groups of thresholds to control the maximum number of 
regions and the area ratio of the smallest region to the largest 
region, and obtain M-scale segmentation results 

  1 2, , , 15MS S S M S   with different number of 

regions. For the segmentation result at the mth scale, 

 1 2, , ,m m m
m KS R R R  , we pick out the confident regions as 

  1 2, , ,m m m
m QS R R R Q K   , in which the number of 

object/background pixels in each region exceeds 80 percent 
of the total number of pixels in the region, and set for each 

 
Fig. 2. PR curves (left and middle) and F-measures (right) of different saliency models. 
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region its saliency score to 1/0 and obtain the binary-valued 

vector  1 2, , ,m m m
m QA a a a  . 

As aforementioned, each region m
iR  in mS   can be 

represented using a 445-dimensional saliency vector m
ix  

consisting of multi-level saliency and regional properties. 
The DSF regressor F  based on random forest is learned 

from the training data  1 2, , ,m m m
m QX x x x   and the 

saliency score vector  1 2, , ,m m m
m QA a a a  . The DSF 

regressor F  can fuse the multi-level saliency values in a 
discriminative way. For each test image with segmented 
regions, the DSF regressor F  is exploited to estimate the 
saliency measures of regions and generate the region-level 
saliency map as shown in the rightmost column of Fig. 1. 
 

3. EXPERIMENTAL RESULTS 
 
3.1. Datasets and experimental settings 
 
We performed experiments on two public datasets designed 
for depth-aware saliency detection: RGBD-1000 [6] and 
NJUDS-2000 [7] including 1000 RGBD images and 2000 
stereoscopic images, respectively, along with manually 
labelled ground truths for salient objects. Note that the depth 
information is captured by Kinect in RGBD-1000 and 
represented by disparity maps in NJUDS-2000. 

Since we used 500 images from the RGBD-1000 dataset 
to train the random forest regressor in Section 2.4, and thus 
the remaining 500 images in RGBD-1000 and all the 2000 
images in NJUDS-2000 are used as the two test datasets. 
The test over the two datasets can help to evaluate the 
adaptability of the proposed model. In order to present a 
robust evaluation of saliency detection performance, we 
adopt the commonly used precision-recall (PR) curve, which 
is plotted by connecting the precision-recall scores at all 
thresholds. Besides, we use F-measure, which can be 
interpreted as a weighted average of precision and recall, to 
quantitatively evaluate the quality of saliency maps. The 
adaptive thresholding method [OTSU] [17] is performed on 

each saliency map to obtain the binary mask of salient 
objects for calculating F-measure, and the weight coefficient 
in F-measure is set to 1 to weight precision and recall 
equally. 
 
3.2. Training parameters 
 
Based on some comparison experiments, we set several key 
training parameters used in Section 2.4 as follows. The 
maximum region number of the finest segmentation to 
generate the training samples is set to 300. We totally use 
200 trees to construct the random forest for training our DSF 
regressor. During constructing a decision tree, the number of 
predictors sampled for splitting at each node is set to 75 in 
order to balance the efficiency and the effectiveness. 
 
3.3. Results and Discussion 
 
We compared our model with state-of-the-art saliency 
models including four depth-aware saliency models, i.e., SD 
[6], ACSD [7], CSD [10] and CDL [11], as well as three 
high-performing 2D saliency models including SO [3], ST 
[4] and DRFI [5]. For all saliency models, we used the 
saliency maps, executables or source codes with default 
parameter settings provided by the authors. For a fair 
comparison, we retrained a new model for DRFI [5] using 
the same training dataset as our model. 

Objective comparisons of different models are shown 
in Fig. 2. It can be seen from Fig. 2 that our model 
consistently outperforms all the other models on the two 
datasets in terms of PR curve and F-measure. Saliency maps 
of several example images are shown in Fig. 3 for a 
subjective comparison. It can be seen from Fig. 3 that our 
model can generally better highlight salient objects with 
well-defined boundaries and suppress background regions 
effectively, compared to other saliency models. Especially 
for some complicated images such as the bottom two 
examples, other models may be distracted by the cluttered 
background and low contrast between salient object and 
background regions, while our model also highlights the 
complete salient objects well. 
 

4. CONCLUSIONS 
 
This paper has proposed a new depth-aware saliency model 
using discriminative saliency fusion method. Saliency maps 
of different features at three levels are calculated by taking 
account of primary depth and appearance contrasts, different 
feature weighted factors and location priors respectively. 
Then we learn a random forest regressor to perform the 
discriminative saliency fusion and generate the final regional 
saliency map. Both subjective and objective evaluations 
demonstrate that the proposed model achieves a satisfactory 
overall saliency detection performance both on RGBD 
image dataset and stereoscopic image dataset. 

 
Fig. 3. Saliency maps generated using different models. 
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