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ABSTRACT 

 

We present a new approach for constructing the 3D 

panorama for an indoor environment by joining together 

aligned submaps. For each submap, the trajectory of the 

moving camera is estimated based on the Kanade-Lucas-

Tomasi (KLT) features. Our method can update the feature 

set status by adding new features and removing expiring 

ones adaptively to accommodate scene changes. The 

accuracy of the estimated poses is further improved through 

sparse bundle adjustment. Furthermore, we utilize a linear 

optimization framework to align all submaps to obtain a 

consistently extended 3D panorama and to refine the visual 

odometry at the same time. We evaluated our approach on 

publicly available benchmark datasets. The experiments 

demonstrate that the proposed method achieves low 

translational drift and is robust even when the camera moves 

very fast. 

 

Index Terms— SLAM, RGB-D camera, linear optimi- 

zation, visual odometry 

 

1. INTRODUCTION 

 

Visual odometry refers to estimation of camera motion. 

Drift-free visual odometry is specifically important to robot 

localization, path planning, navigation and augmented 

reality [1-5]. Recently, with the introduction of novel RGB-

D sensors such as Microsoft Kinect, the technique of 

simultaneous localization and mapping (SLAM) is widely 

explored in these fields. 

 

Most SLAM methods favor sparse feature extraction [6-9]. 

Endres et al. [9] propose a RGB-D SLAM system which 

estimates the pairwise transformation to build a pose graph 

based on several types of features detected. For the cases 

that few feature matches could be established, Henry et al. 

[12] use iterative closest point (ICP) to align the dense point 

clouds. They optimize the system by using sparse bundle 

adjustment (SBA). In contrast to feature-based methods, 

dense approaches have begun to emerge in recent years [13-

17]. KinectFusion [15] registers each new measurement with 

the already constructed map via ICP in a frame-to-model 

manner. However, it does not optimize those previous 

camera poses, making accumulated drift difficult to correct. 

It has been shown that instead of the geometric error, 

accumulated photometric error between consecutive frames 

can also be minimized [16]. Additionally, visual SLAM 

systems combining the photometric and geometric errors 

have been developed [13, 17]. Kerl et al. [13] show that 

their system outperforms several state-of-the-art sparse 

feature-based methods. A key issue that hampers the 

practical application of those dense methods is that such 

methods always suffer from high computational cost. 

 

 
+ without optimization        # optimized odometry        – ground truth 

 

Fig. 1 Comparison between the estimated odometry without 

and with linear optimization and the ground truth for the 

fr1/desk dataset. 

 

Filtering-based methods have been used for large-scale 

SLAM systems [18-21]. Camera poses and feature locations 

are included in the state vector of a filter, e.g. an extended 

Kalman filter [20], or sparse Information filter [18, 19, 21], 

and are refined incrementally. The experimental results 

show that a large-scale map could benefit from joining 

together local submaps. Zhao et al. [21] provide a map-

joining algorithm through solving a sequence of linear least 

squares problems. Their experimental results are very close 

to the best solutions obtained by full nonlinear optimization, 
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if an accurate initial value is known. They use the submaps 

already available in the dataset for their experiments, but 

how to generate a good initial submap is not touched. 

Generating high-quality submaps is crucial as it lays the 

foundation for an effective SLAM system. 

 

In this paper, we present a new SLAM approach for 

constructing 3D panorama for indoor environments by 

joining together local submaps. A submap is defined by a 

vector of camera poses and feature locations and is built 

along with updates of feature sets. We extract KLT features 

from the color streams of a Kinect camera and remove 

invalid features from the feature set. The trajectory of the 

camera is estimated using the features and is further refined 

through SBA. In the next step, we treat each submap as an 

observation and utilize a linear optimization approach to 

obtain a global map. We explain how to build submaps from 

publicly available datasets and test the proposed approach 

using them. Furthermore, we reconstruct the scene to 

intuitively demonstrate the accuracy of the estimated 

odometry. The comparison between different SLAM 

methods for the fr1/desk dataset is shown in Fig. 1. 

 

      
(a)                                                (b) 

Fig. 2 A submap begins from frame 86 and ends at frame 

103 of the fr1/desk dataset. (a) The extracted keypoints on 

frame 86. (b) The tracked keypoints on frame 103. We mark 

the keypoints with blue crosses. 

 

Our main contribution is that we develop a new visual 

SLAM framework that builds the global map efficiently by 

joining together a sequence of submaps with high-quality 

visual odometry estimated.  

 

The rest of this paper is organized as follows. Section 2 

explains the process of building submaps. Joining all 

submaps together by solving a sequence of linear least 

squares problems is described in Section 3. In Section 4 

some experimental results are shown to evaluate the 

performance of the proposed method on publicly available 

datasets. Section 5 concludes the whole paper and highlights 

future work. 

 

2. FEATURE BASED SUBMAP BUILDING 

 

2.1. Establishing 3D Correspondences 

 

We extract the KLT features [22] on the first color frame, 

and track them on the following frames. A new submap 

starts from a frame on which the number of the tracked 

points is lower than a threshold   (we use 500 in this 

experiment) while the previous submap ends. The first frame 

of each submap is marked as a keyframe. Obviously, every 

two adjacent submaps share one common frame. 

 

More features need to be extracted from a keyframe for 

keeping the number of the observations of features in 

balance. The tracked points appearing on the end frame 

seem strong and stable because they are visible on any other 

frame of a submap. Given the depth map, the 3D coordinates 

of each feature can be computed by means of the intrinsic 

parameters of the camera. We can thus establish feature 

correspondences easily. 

 

2.2. Optimizing Pairwise Transformation 

 

Suppose that the camera is placed at the world origin 

without any rotation at the beginning of a submap. 

Registering dense point clouds generated by the end frame 

with those points of the keyframe using ICP [23] derives a 

rigid transformation T. Using this transformation, we can 

transform the matched 3D keypoints in the coordinate frame 

of the end pose to the start pose. A correspondence is 

regarded as an outlier if the Euclidean distance between a 

point and the corresponding transformed point exceeds a 

threshold. Through extensive experiments, we set this 

threshold to 0.025 meter in our experiments. Consequently, 

we estimate the pairwise transformation using those inliers 

in a frame-to-keyframe manner. Furthermore, the location of 

the observations of features is optimized by minimizing the 

accumulated reprojection error between the reprojected 3D 

feature points and the corresponding points on the imaging 

plane. For more details on SBA, please refer to [24]. 

 

 
Fig. 3 A submap: P0 is the start pose, P1 is the end pose, and 

features are in the coordinate frame of P0. 
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We use SIFT to describe features and compare all valid 

features of the current local map with the previous ones. 

New features which have not seen before are assigned a 

number as identity and are added to the feature set. 

 

In this way, we build a submap which consists of camera 

poses and a number of features in the world coordinate 

system. Fig.3 shows the submap built from frame 86 to 

frame 103 of the fr1/desk dataset. 

 

3. LINEAR SOLUTION TO SUBMAP JOINING 

 

Let 1L
M  and 2L

M  be two consecutive submaps, respectively. 

We discuss how to align them efficiently in this part. 

 

3.1. Traditional Ways of Submap Joining 

 

We use P0, P1, and P2 to represent the start pose of 1L
M ,  the 

end pose of 1L
M  (i.e. the start pose of 2L

M ), and the end 

pose of 2L
M , separately. 12G

M  denotes the extended map. 

The traditional way to build 12G
M  is based on the common 

features that are present on both 1L
M  and 2L

M . If few or 

none common features exist, 2L
M  can be directly 

transformed into the coordinate frame of P0. This process is 

easy-to-implement, but inherently prone to drift. The goal of 

joining together every two adjacent submaps can be 

achieved by solving a sequence of nonlinear optimization 

problems [18]. For pose-based submap joining problem, the 

g
2
o framework [10] can be further used to fuse together 

those local SLAM results [9, 13]. Although these methods 

seem to work well on most benchmark datasets, a good 

initialization with an accurate value cannot be guaranteed. 

This severely limits their practical application. 

 

3.2. A New Way of Submap Joining 

 

The linear SLAM [21] inspires us to develop a novel way of 

submap joining. It provides a linear solution which performs 

well by fusing together two local maps in the same 

coordinate system. Both 1L
M  and 2L

M  are defined in the 

coordinate system of P1, 

   1 1 1 2 2 2ˆ ˆ, , ,
L L L L L L

M I M I                   (2) 

where 1ˆ L
  and 2ˆ L

  are the estimates of the state vectors 1L
  

and 2L
 , and 1L

I  and 2L
I  are the associated information 

matrices. 
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1

1

L

F  and 2

2

L

F  denote the features that appear in 1L
M  or 2L

M , 

respectively, while 1

12

L

F  and 2

12

L

F  represent the common 

features that are visible in the two submaps. 1

0

Lt  and 2

2

Lt  

denote the translation vector, and 1

0

Lr  and 2

2

Lr  denote the 

rotation angles of P0 and P2, respectively. 

 

Our goal is to obtain the state vector of 12G
M which is 

defined as 
12 12 12 12 12 12 12 12
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Note that 12G
  is presented in the coordinate frame of P2. 

 

If we transform poses and features in 12G
  into the 

coordinate frame of P1 through a coordinate transformation 

function g, the new state vector is denoted as 

 12 12

12 12 12 12 12 12 12
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where the differences between 12G
  and 1ˆ L

 , 2ˆ L
  could be 

measured. The task of aligning 1L
M  and 2L

M is therefore 

transformed to a linear least squares problem which can be 

solved efficiently by minimizing the following objective 

function 
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Then the optimal solution can be obtained by 

 12 1 12ˆˆ G G
g 



                             (8) 

It should be noted that the submaps we build in Section 3.1 

are defined in the coordinate frame of the start pose. A 

coordinate transformation as pre-processing is thus needed 

for some submaps. Then we obtain the state vector of the 

global map after joining all the submaps together. 

 

4. EXPERIMENTS AND EVALUATION 

 

We use the RGB-D benchmark datasets [11] to evaluate our 

approach. The datasets provide ground truth and an 

evaluation tool to compute the root mean square error 

(RMSE) of drift. 

 

4.1. Drift Evaluation 

 

We test our approach using nine datasets. We extract the 

camera poses of keyframes from the state vector of the 

global map of each dataset and compute the Relative Pose 

Error (RPE) by using ground truth as the benchmark. The 

results are shown in Table I. 

 

The experiments show that our method yields an average 

drift of 0.054 m/s and can deal with camera velocities of up 

to 50 deg/s and 0.43m/s in common indoor scenarios. Note 

that, the relatively high drift value for fr1/360 and fr1/floor 
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is due to the mistakes of assigning identity numbers to 

features. The ID of features plays a crucial role in correcting 

drift. It facilitates the detection of a loop. That is to say, if a 

lot of features which already exist in the feature set reappear, 

a loop closure is formed. 

 

TABLE I: RMSE of translational drift in m/s for odometry 

achieved by the proposed method on all fr1 datasets. 
 

Dataset 

Name 

Submap 

Number 

Avg. 

Angular 

Velocity 

Avg. 

Transl. 

Velocity 

Transl. 

RMSE 

fr1 rpy 153 50.15 deg/s 0.06 m/s 0.020 

fr1 xyz 119 8.92 deg/s 0.24 m/s 0.013 

fr1 360 268 41.60 deg/s 0.21 m/s 0.090 

fr1 desk 137 23.33 deg/s 0.41 m/s 0.029 

fr1 desk2 152 29.31 deg/s 0.43 m/s 0.056 

fr1 room 314 29.88 deg/s 0.33 m/s 0.079 

fr1 floor 549 15.07 deg/s 0.26 m/s 0.089 

fr1 plant 473 27.89 deg/s 0.37 m/s 0.066 

fr1 teddy 502 21.32 deg/s 0.32 m/s 0.047 

 

4.2. Scene Reconstruction by different methods 

 

To further evaluate the accuracy of the estimated odometry, 

we reconstruct the scene for the fr1/desk dataset. Fig. 4 

shows the reconstruction results using different methods for 

a scene in this dataset. 

 

     
(a)                                           (b) 

     
(c)                                             (d) 

Fig. 4 Reconstruction results. (a) The result by joining 

together submaps directly without optimization. (b) Our 

result. (c) Using the SLAM method by Endres et al. (d) 

Ground truth. 

 

As can be seen from Fig. 4 (a), joining together submaps 

directly without any optimization leads to severe mis- 

alignment. The reconstructed scene looks messy. Our result 

(Fig. 4 (b)) is better than the result (Fig. 4 (c)) generated by 

using the SLAM method [9]. It is obvious that our approach 

yields a result that looks similar to the ground truth. 

 

5. CONCLUSIONS AND FUTURE WORK 

 

We have presented a novel approach for building feature-

based local submaps and joining together these maps to 

obtain the 3D panorama. Our experiments on publicly 

available benchmark datasets demonstrate that the proposed 

approach is capable of dealing with camera velocities of up 

to 50 deg/s and 0.43m/s in common indoor scenarios, and 

obtains even more stable visual odometry with an average 

drift lower than 0.054 m/s. The 3D panorama we generate is 

comparable to the ground truth. 

 

In the future, we plan to further improve the quality of the 

3D panorama by fully leveraging each captured raw RGB-D 

frame. In addition, we intend to convert the point cloud 

representation of the final 3D panorama into the high-quality 

surfel representation. 
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