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Abstract—Saliency measures are a popular way to predict
visual attention. However, saliency is normally tested on sets
of single resolution images that are unlike what the human
vision system sees. We propose a new saliency measure based
on convolving images with 2D gamma kernels which function as
a comparison between a center and a surrounding neighborhood.
The two parameters in the gamma kernel provide an ideal
way to change the size of both the center and the surrounding
neighborhood, which makes finding saliency at different scales
simple and fast. We test the new saliency measure on both the
CAT2000 database and the Toronto database and compare the
results with other simple saliency methods. In addition, we test
the methods on a foveated version of the Toronto database to test
whether these methods perform well in a fixation system similar
to the human vision system. Gamma saliency is shown to both
perform better and compute faster than the competing methods
in both the standard databases and the foveated version.

Index Terms - Saliency, Gamma kernel, Image processing,
Foveation

I. INTRODUCTION

Humans have the ability to view a scene and form an overall
representation in a remarkably short length of time. However,
due to the complexity of visual search, it is reasonable to
assume that humans do not fixate on and process every small
region in an image [11]. Instead, the entire image is quickly
sent through a pyramidal processing mechanism that selects
fixation regions for more attention [19]. By selecting only
these small regions, the human vision system (HVS) is able
to quickly process pieces of the scene to form an overall
representation that is stored in the brain.

However, current techniques in image processing tend to
process entire images by convolving them with learned filters.
Here, we can take inspiration from the HVS and only process
a number of subregions and form an overall representation
of the entire scene. In the same way that convolving learned
filters over an image is a step beyond scanning pixel-by-pixel,
processing still images as videos of small frames composed of
visually interesting regions could be a further step that simply
discards large regions of the image that have little to no effect
on classification.

Saliency is defined as the state or quality by which an object
stands out relative to its neighbors. An object tends to be more
salient if it is brightly colored, flashy, and altogether different
from its surroundings. By using saliency as a proxy for visual
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attention, it could be possible to create a system that quickly
selects regions of interest for more computationally intensive
processing, then combine these representations into an overall
understanding of a complex scene in much the same way the
HVS works.

Since the introduction of Itti’s method in 1998 [11], saliency
has become a popular way to predict visual attention in images
and could therefore be used to segment out the interesting
regions for faster processing. Most saliency measures work by
combining a number of simple features such as color, intensity,
and orientation to find distinct regions in images that could
attract the human eye. Two competing views of saliency are
the center-surround methods that compare a local center to
a neighborhood such as Itti [11], Fast and Efficient Saliency
[17], AIM [3], Graph Based Visual Saliency, [10], and Region
Covariance Saliency [6]; and the global context methods that
compare regions to other regions from any location in the
image, such as Torralba [18], and RARE2012 [16].

However, there are fundamental differences between how
these saliency measures are tested and how the human vision
system uses saliency to direct attentive exploration of the
surrounding scene. Human vision has full access to high
resolution data only in a small region called the fovea where
the focus of attention is centered, approximately 3 degrees
of visual angle around the point at which gaze is directed
during a given moment in time. Thus, in addition to bottom-up
saliency, the human brain must infer/extrapolate or remember
parafoveal and peripheral information, or use a combination
of the two, to compute targets of interest for future fixation
locations: As shown from empirical research on saccadic
exploratory eye movements, these future fixations will target
the blurry, low resolution regions in the visual periphery. In
order for saliency metrics to properly mimic the human vision
system, they must therefore be able to find regions of interest
outside the initial focal area. However, saliency algorithms
applied to digital images have per definition access to the full
resolution across the field of view.

To address this crucial difference between the biological and
computational study, a framework is needed to transform im-
ages from single resolution to multi-resolution. Using images
with a clear field of focus and a blurred periphery is called
foveated imaging. Foveated imaging has been used in other
areas in image and video processing to this date, mainly for
compression and faster processing [12], [8]. In addition, some
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(a) The center kernel (b) The surround kernel

Fig. 1. Visual representation of the center and surround kernels

saliency metrics have been tested in multi-resolution images
in an attempt to speed computation and improve results [1],
[9], but study in this area is still limited.

We propose that to build a vision system that adheres as
closely as possible to the human standard, the saliency measure
should be capable of predicting regions of interest outside the
initial focal area. To this end, we have selected several current
saliency metrics as well as created our own and will study
them in a standard fixation database, but the images will be
foveated before calculating the saliency maps.

Outside of saliency, gamma kernels have been used for
target detection [14], [?]. The circular shape of the gamma
kernels is ideal for comparing a center region to a local
neighborhood, and the size of each can easily be controlled
through the use of two parameters, which allows for easily
changed scales. In addition, the gamma kernel has many
properties such as the ability to be computed recursively and
the smoothness of the neighborhood that make it well suited
to signal processing methods.

In this paper we introduce a new saliency measure based on
convolutional 2D gamma kernels. These kernels function as a
quickly computed saliency measure since the main difference
calculation can be done with a single convolution on each of
the feature vectors. We first Gamma saliency in Section II,
Section III contains the results of the experiments on both
standard and foveated datasets, and Section IV concludes the
paper.

II. METHOD

Similar to the Gamma CFAR, Itti method, and others
(though the CFAR is not a saliency measure, but a specific
target detector), Gamma saliency is based on the center
surround principle: a region is salient if it is different from
the neighborhood. In order to compute these local differences,
we use a 2D gamma kernel that emphasizes a center while
contrasting it with a local neighborhood through convolution:

gk,µ(n1, n2) =
µk+1

2πk!

√
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e−µ
√
n2
1+n

2
2 (1)

For this kernel, n1 and n2 are the local support grid, µ is
the shape parameter, and k is the kernel order. Using µ and
k, we can control the shape of the kernel: when k = 1 the
kernel peak is centered around zero. For larger kernel orders,
the peak is centered k/µ away from the center. In addition,
smaller values of µ will increase the bandwidth of the peak.

With these parameters we can construct a 2D shape that
compares a center region to a surrounding neighborhood
by subtracting a kernel with order k > 1 from a kernel
with order k = 1. The 1st order kernel functions as the
center while the higher order kernel forms the surrounding
neighborhood. By adjusting the shape parameter and order of
the neighborhood kernel we can control the size and location
of the neighborhood relative to the center, and as well as adjust
the size of the center by using the shape parameter for the
center kernel. Fig. 1 shows an example of a center kernel
with parameters µ = 1 and k = 1 along with the surround
kernel with parameters µ = 1 and k = 10.

For a multiscale saliency measure, we simply combine
multiple kernels of different sizes before the convolution stage
(2). A kernel with a larger center scale is subtracted by a
surround kernel with a larger and further removed neighbor-
hood, effectively searching for larger objects by comparing
more overall area in the image. By summing all the kernels
before the convolution stage, we create a system which is
capable of computing saliency at different scales without
adding extra computation beyond a simple summation. The
kernel summation is described in (2), where all k for even
m are 1 to create the center kernels. The number of different
scales is m/2.

gtotal =

M−1∑
m=0

= (−1m)gm(km, µm) (2)

In addition to the circular shape of the neighborhood, the
gamma kernel has other useful properties that can be exploited.
The shape of the neighborhoods is smooth, which is in contrast
to other methods which choose neighborhoods that sample
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Method \ Metric ROC (Judd) ROC (Borji) Similarity Correlation NSS Time (s)
Itti .712 .597 .384 .275 .341 .280

AIM .746 .632 .403 .363 .479 1.10
Torralba .684 .600 .374 .292 .360 .78
GBVS .848 .677 .488 .570 .638 1.03
FES .847 .586 .520 .572 .446 .21

RARE2012 .785 .625 .477 .551 .489 1.39
RCS .747 .609 .431 .414 .413 15.84

Gamma .862 .695 .588 .581 .546 .21
TABLE I

ATTENTION PREDICTION RESULTS ON THE TORONTO DATABASE

Method \ Metric ROC (Judd) ROC (Borji) Similarity Correlation NSS Time (s)
Itti .700 .570 .377 .206 .258 .25

AIM .772 .628 .437 .335 .497 1.04
Torralba .770 .619 .437 .324 .448 1.20
GBVS .844 .642 .498 .486 .510 1.05
FES .812 .576 .562 .628 .368 .29

RARE2012 .822 .643 .466 .408 .511 1.37
RCS .763 .593 .431 .292 .352 14.91

Gamma .852 .676 .592 .633 .468 .21
TABLE II

ATTENTION PREDICTION RESULTS ON THE CAT2000 DATABASE

Method \ Metric ROC (Judd) ROC (Borji) Similarity Correlation NSS
Itti .737 .597 .403 .314 .369

AIM .794 .657 .433 .458 .561
Torralba .784 .650 .433 .469 .539
GBVS .839 .664 .502 .603 .594
FES .846 .571 .487 .536 .403

RARE2012 .841 .656 .525 .632 .591
RCS .819 .629 .517 .595 .517

Gamma .858 .684 .607 .649 .483
TABLE III

ATTENTION PREDICTION RESULTS ON THE FOVEATED TORONTO DATABASE

at a fixed radius. Also, the gamma kernel can be computed
recursively. Though we don’t make use of the recursive
computation here in favor or pre-computing the kernel for
speed, the recursive property could be exploited to extend this
method to work in a temporal structure such as video saliency.

With this local difference measure, the rest of the saliency
measure is constructed similarly to the other center surround
methods [13]: the image is broken into feature matrices, each
matrix is convolved with the multiscale kernel, the matrices
are combined and exponentiated to accentuate peaks, then
postprocessing is performed to boost results using a Gaussian
blur and a center bias.

The feature matrices are composed of the CIELab color
space, which has three matrices - one luminence matrix
and two color opponency matrices. In CIELab space, the
distance between two colors can be calculated using simply
the Euclidean distance, which is a useful property that we
take advantage of in the convolution. Each of these matrices is
convolved with the multiscale gamma kernel to get the saliency
measure in each channel (3). In the following equations, • is
the convolution operator.

S =
|g • L|+ |g • a|+ |g • b|

3
(3)

Once we have the overall combined saliency map, there are

a few common postprocessing mechanisms used to improve
results. First, the main peaks in the measure are accentuated
by raising the combined map to a power α > 1. Next, it is
well known that humans tend to fixate on the center of images,
so a Gaussian weighting is applied to the center of the image
where the variance of the Gaussian is dependent on the image
size. Finally, to reduce the effects of noise and created a more
streamlined map, the map is blurred using a small Gaussian
kernel (4) as in [17].

S = (SαG(σ2)) •G(.5) (4)

III. RESULTS

Results were computed on the Toronto dataset [4] and the
CAT2000 training database [2]. The Toronto database consists
of 120 images shown to 20 students for four seconds of
free-viewing. The CAT2000 database has 2000 images drawn
from 20 different categories for a wide variety of image
foregrounds and backgrounds, as well as the fixation data from
18 different observers. The observers were given the task of
free-viewing each image for five seconds with one degree of
visual angle corresponding to roughly 38 pixels in each image.
Each set of saliency maps were computed with the default set
of parameters recommended by the algorithms. For Gamma
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(a) Original Image (b) AIM (c) RCS (d) FES (e) GBVS

(f) Itti (g) RARE2012 (h) Torralba (i) Gamma (j) Fixation Map

Fig. 2. A comparison between different saliency measures for an image in the Toronto Database

Saliency, the parameters used were k = [1, 1, 1, 26, 25, 19],
µ = [2, 1, .5, 2, 1, .5], and α = 5.

The maps were then compared to the collected fixation data
using these metrics: the area under ROC curve created by Judd,
the area under ROC curve by Borji, the similarity measure, the
correlation coefficient, and the normalized scanpath saliency.
The area under ROC curve by Judd is measured as the
proportion of saliency map values above a threshold at the
fixation locations to the number of values below the threshold
at the fixation locations. In contrast, Borji’s version of the
area under ROC curve measure the proportion of true postives
to false positives, which are the values in the saliency map
above a threshold that do not correspond to a fixation location.
The similarity measure treats each map as a distribution and
computes the histogram intersection. The correlation measure
is Pearson’s linear coefficient between the two maps. Lastly,
the normalized scanpath saliency refers to the mean value of
the normalized saliency map at fixation locations [5]. In each
of the metrics, the higher number indicates a better result.

For calculating the computation time, each algorithm was
set to produce a saliency map sized 128x171 to ensure that
algorithms that downsample don’t have an inherent advantage
for computation time. All times were computed on PC running
Matlab R2012a on an i5-2310 clocked at 2.9GHz.

Table 1 shows the results from comparing the saliency maps
with the fixation maps in the Toronto database across five
different metrics along with the mean time to create a saliency
map from a single image in the database, with the best results
for each metric in bold. Gamma saliency performs the best in
four of five metrics, with the closest competitor being GBVS.
Gamma saliency is also the fastest since it is based on a
convolutional filter. Table 2 shows the results for the CAT2000
database. Once again Gamma saliency performs the best in 4
of 5 metrics and computes the saliency maps in the fastest
times. Fig. 2 shows the resulting saliency maps from a single
image in the Toronto Database for a qualitative analysis.

To create the foveated dataset, the present study created
images that are increasingly blurred around a small high-

resolution area (artifical fovea). To create these images, we
used the fast method developed by Geisler and Perry for
images and videos in 2002 [7]. This method creates arbitrary
visual fields in displays that allows for relatively high frame
rates so that the visual field in the displays can be controlled
in real time. We used this method to blur each image in the
Toronto database around the center point, creating an artificial
fovea that corresponds to the approximate size of the original
center fixation.

Table 3 shows the results for each saliency measure on the
foveated Toronto database. Gamma saliency still performs the
best across most of the metrics, which shows that it could be
used in a fixation system that approximates the HVS by using
foveated inputs. Interestingly, the foveation actually improves
the results obtained by most saliency measures, possibly by
natually adding a blur and center bias that has been shown to
improve results in previous studies.

IV. CONCLUSION

In this paper we prosed a new saliency method based on
a 2D gamma kernel that functions as a convolution filter
to estimate local saliency. Using 2D gamma kernels gives
us an efficient method that also lends itself easily to the
multiscale architecture preferred in most saliency algorithms.
We show that the results are better than other comparably
simple methods and that the computation time is extremely
fast.

Also, we showed that foveating images before processing
not only better approximates the working of the HVS, but it
also improves the results. This could be due ot the natural
center bias and blurring involved in foveation.

Future work could include adapting the shape parameter
to find scales that fit the input data, which would eliminate
the need to either fix or scan the parameters. Another step
would be to extend this measure to work in videos, possibly
using the recursive calculation. Finally, we will also include
this saliency work in an architecture that saves computation in
computer vision systems by only processing salient regions.
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