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ABSTRACT

In this paper, a new method is proposed to generate image-
assisted geometry simplification for estimating minimum
sampling rate of image-based rendering (IBR). If some geom-
etry information (e.g., the shape of object surface and proxy
geometry) on a scene is known, we can decompose the scene
geometry into a collection of simpler structures on a block-
by-block basis. Our framework predicts the characteristics of
simpler structure such as irregular object. Predictions on the
frequency content can then be used to control sampling rates
for IBR. The new method allows the sampling of the IBR
to be analyzed and estimated for the non-uniform sampling.
Furthermore, the minimum sampling rate of the IBR neces-
sary for alias-free rendering will be reduced as the number of
simpler structures increases.

Index Terms— Image-based rendering, plenoptic sam-
pling, simpler structure, geometry simplification.

1. INTRODUCTION
Image-based rendering (IBR) is one of the most basic and fas-
cinating techniques in 3D computer graphics [1], [2]. In gen-
eral, the IBR uses many images but does not require any ge-
ometrical information to directly create novel views [3], [4].
However, by Chai et al. [5], for IBR, as more geometrical in-
formation becomes available, fewer images are necessary. To
this case, an important decision is the needed geometrical in-
formation determination, that best balance between the num-
ber of images necessary and reconstructed view quality[5].

The answers to the above question are related to the sam-
pling problem of the IBR which is mentioned for the first time
by Gortler et al. [6] and Levoy et al.[7]. It is also analyzed in
detail by Shum et al. [8], Chai et al. [5], Zhang et al. [9], Do
et al. [10], and Gilliam et al. [11]. The above methods are
based on the spectral analysis point of view to determine the
minimum sampling rate of the IBR. These efforts have pro-
duced an extensive array of interesting results that shed light
on various aspects of the problem. In particular, a special
case of little amount of depth information utilized is shown in
[5] to appropriately reduce the sampling rate necessary. They
used a method named layered depth [12]-[14] to approximate
a complex scene. Further results for the method of layered
depth from Zhang et al. [9] are investigated to analyze the

Fig. 1. Conceptual illustration of image-assisted geometry
simplification to the IBR based on different surface shapes.

occluded complex scenes. Reference [15] also provides a
fast automatic layer-based method to reduce the number of
images necessary for alias-free rendering in IBR. The theory
has been adapted to approximate the geometry of a scene. In
[16], Chaurasia et al. presented a new approach which uses
the introducing silhouette aware variational warping to com-
pensate for incorrect or incomplete geometric information in
IBR. Recently, Shidanshidi et al. [17] extends the concept of
effective sampling density (ESD) [18]. Measuring the varia-
tion of the ESD on an irregular surface of a scene would allow
us to reproduce the geometry information accurately. Similar-
ly, a signal-processing framework for light transport [19] has
been presented. From a frequency analysis of light transport,
the radiance of light ray and how it is altered by phenomena
such as shading, occlusion, and transport can be studied.

The success of these methods depends on accurate 3D
proxies. In general, the scene geometry is unknown; little
amount of geometry simplification is challenging topic from
dense range scans for a complex scene [16]. Inspired by the
results in [20], our approach does not depend on dense ac-
curate geometric reconstruction; instead we compensate for
sparse 3D information by a set of simpler structures as depict-
ed in Fig. 1. In particular, we formulate the spectral support
of each simpler structure that preserve single salient points.
Our contribution to the existing theory is simplification of a
complex scene to simple structures. Additionally, this method
can be applied to study the non-uniformly sampling in IBR.

2. THE STRUCTURE OF THE SCENE SURFACE
As mentioned earlier, the scene geometry for irregular shape
is unknown and its quantification is very complicated, such as
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Fig. 2. Six common scene surface geometry situations. We
show that these all have similar structures.

the leaves of a tree, and mathematical analysis seems hopeless
[20]. However, we believe many common scene geometry sit-
uations have simpler structures, some of which are illustrated
in Fig. 2. If some information (e.g., the shape of the sur-
face and proxy geometry) on the simpler structures is known,
for the original complex geometrical model, it is simplified as
a set of simpler structures. Each structure will have a much
tighter bound than the whole scene. How tight the bound is
will depend on the accuracy of the geometry. Thus, given the
appropriate number of image samples an average user can af-
ford, appropriate geometric information is utilized while still
guaranteeing the same rendering quality.

2.1. Simpler structure selection
Structure selection can be manually authored in each input
image or computed automatically. For the computed automat-
ically, shape similarity and shape retrieval are very important
step [16]. Now, we assume that the shape of object is given in
advance, and it is represented using S. And then there are K
single salient points according to shape. K also relates to the
spacing ∆t between the cameras and the pixel spacing u and
the depths. Without loss of generality, K is determined by

K ≈ f∆tAhS, (1)

h =
[

1
zmin

− 1
zmax

]
and A ≤ 0.5/u is the highest image

bandwidth in reference to [15], and f is the focal length.
How to the number N of simpler structures is determined?

Taking into account for the scene distribution, our approach
requires pre-annotated single salient points (Fig. 1). By di-
viding the scene into a set of simpler structures, this allows
us to determine the minimum number of simpler structures,
N ≤ K − 1.

2.2. Parameterization

To intuitively show this method used to simplify the whole
scene geometry, we present an example, which is illustrat-
ed in Fig. 3(a). In this example, the whole scene geometry
consists of a plane above, a wall, two V-grooves and a pitted
surface. The whole scene geometry is approximated by these
structures. Note that a scene is described using 3D coordi-
nates in a space as Fig. 1. Here, to simplify, we only present
the parameterization in the 2D space. Thus, the whole scene
geometry can be represented as

z (x) = {zn (x) : x ∈ [xn, xn+1) ,
n = 1, · · · , N, 0 ≤ x ≤ L} , (2)

Fig. 3. (a) Image-assisted geometry simplification using a set
of simpler structures on a block-by-block basis. (b) A simpler
structure is described using Bezier curves.

where zn (x) denotes the geometry function of the nth struc-
ture, and L is the length of scene. Further, the expression of
the geometry with the nth structure is described as

zn (x) = bnQn (x) , for x ∈ [xn, xn+1) , (3)

where bn is a scaling factor of the nth simpler structure, and
Qn (·) is the surface geometry function of the nth simpler
structure between z and x. As shown in Fig. 3(a), the ge-
ometry of the nth simpler structure is mainly described by its
minimum depth znmin and the maximum depth znmax and its
length Ln in x-axis.

Surface geometry parameterization is a extremely com-
plicated work, and well knows methods such as polygo-
nal mesh, linear fitting, and so on. Here, a surface curve
is approximated by Bezier curves [21] which using four
points and a primary function to represent. The precision
of the fitting depends on the four points as shown in Fig.
3(b). In (2), Qn (x) can be described using Bezier, and
then the surface geometry mainly depends on four points,
Pn
0 (xn

0 , z
n
0 ) , P

n
1 (xn

1 , z
n
1 ) , P

n
2 (xn

2 , z
n
2 ) and Pn

3 (xn
3 , z

n
3 ):

Qn (x) ≈
3∑

k=0

Pn
k B

n
k (x), (4)

where Bn
k (x) is a geometry function for the kth element of

the nth simpler structure, and it mainly depends on the surface
geometry of the nth simpler structure. Using (4), we have
znmin = min (zn0 , z

n
1 , z

n
2 , z

n
3 ) , z

n
max = max (zn0 , z

n
1 , z

n
2 , z

n
3 ) .
(5)

Ln = |xn
0 − xn

3 | . (6)
Then, as a very coarse approximation, combining (2) and (4),
the whole scene geometry consists of all the simpler struc-
tures. Here, we only use the control points Pn

k to approxima-
tively represent the scene geometry information.

3. 2D ANALYSIS OF EACH STRUCTURE
3.1. Spectral analysis for each simpler structure
Now, assuming the camera line t coincides with the x coor-
dinate system, the authors link a light ray arriving at (t, v)
to its point of origin on the surface at (x, zn (x)) using the
following geometric relationship

t = x− zn (x) tan (θ) = x− zn (x) v

f
, (7)

where θ is the viewing angle [5]-[11]. It is named as epipolar
plane image (EPI) [22] which is represented by pn (t, v) in
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Fig. 4. Diagrams (a)-(c) showing the spectral supports for the
nth simpler structure; (d) The spectral support of the whole
scene which consists of N simpler structures.

the 2D space. Thus, the spectrum of the nth simpler structure
is expressed as

Pn (ω
n
t , ω

n
v ) =

∫ ∞

−∞

∫ ∞

−∞
pn (t, v) e

−j(ωn
t t+ωn

v v)dtdv. (8)

Substituting (7) to (8), the spectrum of plenoptic function [5]
with the properties of the simpler structure can be analyzed.
However, these related works have been studied by Chai and
Gilliam et al. [5]-[11]. Here, we will not go into the details of
its derivation. Based on the results in [5]-[11], the spectrum
of the nth simpler structure is represented as

ωn
v f ≈ ωn

t bn

3∑
k=0

Pn
k B

n
k (x). (9)

3.2. Spectral support of each simpler structure
In (9), the spectral support of each simpler structure is closely
related to the geometry shape. As mentioned earlier, it can be
described by four points in Fig. 3(b), also, the texture infor-
mation in the scene surface, occlusion, non-Lambertian, and
so on. The spectrum with these information is represented by
Bn

k (x) as in (9). In addition, these factors influence on the
spectral support of the plenoptic function have been studied
by Chai and Gilliam et al. [5]-[11]. And then, we extend
their results to study the non-uniform sampling of the plenop-
tic function based on the method of simpler structures. Figs.
4(a)-(c) show the spectral support for each simpler structure.
Additionally, according to (2) and (9), the spectral support for
the whole scene is given as

ωvf ≈ ωt

{
bn

3∑
k=0

Pn
k B

n
k (x) : n = 1, · · · , N

}
. (10)

Finally, the spectral support of the whole scene consists of all
the spectral supports of simpler structures as Fig. 4(d).

4. SAMPLING THEOREM OF THE IBR BASED ON
THE SIMPLER STRUCTURES

4.1. Non-uniform sampling theory
In [23], Zhang et al. demonstrated that the non-uniform sam-
pling approaches outperform the traditional uniform methods.
Now, based on the method of simpler structures, we present a
non-uniform sampling method for plenoptic sampling. As in
Fig. 3(a), the geometry surface consists of N simpler struc-
tures. This diagram also shows that ∆tn is the spacing be-
tween the cameras based on the non-uniform sampling for the
nth simpler structure. According to (5) and (9), the maximum
camera spacing of the nth simpler structure is given as [5]

Fig. 5. Diagrams (a1)-(f1) show the different simpler struc-
tures. Diagrams (a2)-(f2) of the EPI-volumes for the cor-
responding simpler structures. Diagrams (a3)-(f3) show the
spectrums for the corresponding simpler structures.

∆tn =
2πznminz

n
max

Ωn
vf (znmax − znmin)

, (11)

where Ωn
v is the maximum frequency in the ωn

v -axis.

4.2. Uniform sampling theory
Using the method of the simpler structures, we also present
a uniform sampling theory for plenoptic sampling. For the
uniformity sampling, we use the average depth of all the sim-
pler structures. Then, by (10), similarly to (11), the maximum
camera spacing is expressed as

∆tmax =
π

N

N∑
n=1

(znmin + znmax)

Ωvf (zmax − zmin)
, (12)

where Ωv is the maximum frequency in the ωv-axis.

5. EXPERIMENTAL RESULTS

5.1. Validation of the spectrums for different structures
To testify our proposed method can be applied to perform
the geometry simplification, the spectral supports for differ-
ent simpler structures are measured on a line in a space. Fig.
5 shows that although the minimum depth and the maximum
depth are the same for different simpler structures, but the
spectral supports are different. For example, the spectral sup-
ports in Figs. 5(b3)-)(d3) are different. The reason can be
seen by the geometry shape and texture information are dif-
ferent between the three structures. This demonstrates that
spectral supports of the plenoptic function also depend on the
geometry shape.

5.2. View synthesis
To estimate our proposed method for the geometry simplifi-
cation, synthesis results are carried out by a set of captured
images. The images are captured by a set of cameras which
are non-uniformly placed in a line l = {(x, 0, 0)}. Here,
x ∈ [−100.0, 100.0] cm. The spacing between the cameras
for each simpler structure is calculated by (11). Each view is
rendered using the method of image interpolation [24]-[27].
Three scenes shown in Fig. 6 are used to perform the synthe-
sis. For the synthesis, first we need the depth of the K single
salient points for all of the input images and the view to be
synthesised as Fig. 6. The black points indicate the single
salient points. Now, 200 views are rendered for each scene.
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Fig. 6. (a) Teapot scene. (b) Bunny scene. (c) Dragon scene.

Fig. 7. Diagrams (a1)-(c3) illustrate the ground truths for
teapot, bunny and dragon scenes. Diagrams (a2)-(c2) show
the reconstruction EPI volumes for the corresponding scenes.

Fig. 8. PSNR with respect to number of single salient points.

Fig.7 shows the rendered EPI volumes of 200 views. It can be
seen that given the lack of accurate geometry for foreground
objects, the rendered results have no ghosting artifacts.

To evaluate the influence of single salient points on the
sampling rate, we also use the three scenes to render the 200
views. The number of captured images is the same, and then
using different number of single salient points. We validate
this analysis and the effectiveness of our method in Fig. 8
which shows the variation of PSNRs with the number of s-
ingle salient points over all the evaluation data sets. This
demonstrates that the PSNR increases as the number of single
salient points increases. But then the improvement of PSNR
becomes less significant with increasing number.

5.3. Comparison results
To enable comparison of accuracy with alternative solutions,
the method of silhouette-aware warping (SAW) [16] and it-
s datasets are applied to perform the experimental evaluation.
The data sets are named as aquarium-20, street-10 and tree-18
in Figs. 9(a1)-(c1). For each scene, one view is rendered by
12 captured images, and the rendered method is using image
interpolation [24]-[27]. In addition, the geometry simplifica-
tion is performed using our proposed method and the SAW.

The results which are rendered by our proposed method
are shown in Figs. 9(a2)-(c2). Figs. 9(a3)-(c3) show the
corresponding rendering results for using SAW. It can be ob-
served in either Figs. 9(a2)-(c2) or Figs. 9(a3)-(c3) that seri-

Fig. 9. (a1)-(c1) Ground truths; (a1) Aquarium-20; (b1)
Street-10; (c1) Tree-18 [16]. (a2)-(c2) The rendered virtual
views using our proposed method. (a3)-(c3) The correspond-
ing rendered virtual views using SAW.

Table 1. The PSNRs using our proposed method and the
SAW for different scenes, (dB).

Methods Aquarium-20 Street-10 Tree-18

SAW 25.87 26.76 27.54

Our method 26.90 27.68 28.13

ous aliasing in the rendered views of the these scenes exists,
due to the number of captured images too small (i.e., under-
sampled). Apparently, the aliasing in Figs. 9(a3)-(c3) is more
serious than in Figs. 9(a2)-(c2). Furthermore, the PSNRs in
Figs. 9(a2)-(c2) and (a3)-(c3) are presented in Table I. Form
the above analysis, we can consider that the method of simpler
structures can be applied to simplify the geometry of a scene
for estimating minimum sampling rate of the IBR. And the
performance of the geometry simplification is precede SAW.

6. CONCLUSION
In this paper, a new method is proposed to decompose a orig-
inal complex geometrical model into a collection of simpler
structures. The purpose is to reduce the number of images
necessary for alias-free rendering in IBR. The influence of
the geometry variation for each structure on the spectrum has
been studied. Based on the support of the spectrum, the spac-
ing between the cameras needed to reconstruct the continuous
light field up to a certain camera plane frequency can be de-
termined. Furthermore, this geometry simplification method
can be applied to analyze the non-uniform sampling in IBR.
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