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ABSTRACT
In this paper, we proposed a novel quality assessment frame-
work for the performance ranking of image dehazing algo-
rithms by employing prior features and radial basis function
(RBF-based) classifier. First, we formulate the evaluation
problem within a novel comparison framework by using clas-
sification methods. Second, prior information is used to ex-
tract the inherently feature of hazy image and these feature
values are normalized with psychological inference bench-
mark (PIB) to eliminate the cognitive bias of individuals. Fi-
nally, a cost-compensation classification network is cyclically
utilized to rank the image dehazing performance until the it-
eration ends and updated the PIB in every loop. Experiments
show that the proposed method is more effective for evaluat-
ing the image dehazing performance than the existing blind
image quality assessment methods, and the evaluation results
correlate well with human judgments of image quality.

Index Terms— Image dehazing, no-reference image
quality assessment, PIB, prior feature, classification

1. INTRODUCTION

Along with the advance of haze removal techniques in the
past few years, how to effectively compare the performance
of image dehazing becomes a novel task. The current assess-
ment method of image dehazing performance is mainly based
on subjective evaluation [1-3], which is strongly affected by
the cognition of individuals. This could cause the cognitive
bias between individuals and it is not always suitable for ap-
plications. Consequently, the proper quantitative assessment
methods should be studied to mimic the perceive ability of
human and to evaluate images automatically [4].

Image haze removal is inherently an ill-posed problem,
because a haze-free reference image in the same scene is often
not available. Hence, we should employ the no reference im-
age quality assessment (NR-IQA/ Blind-IQA) methods for e-
valuating image dehazing performance. The most existing ap-
proaches of NR-IQA are to use a single indicator to calculate
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Fig. 1. The framework of the proposed approach.

an absolute quality score for image, such as BRISQUE [6],
BLINDS [7], CORNIA [8], etc. Moreover, some researcher-
s employ full reference image quality assessment metrics to
quantify the visual quality of the dehazed image comparing
with the original hazy image [10,11].

Recently, machine learning technology has been applied
in image quality assessment. Most of the state-of-the-art
frameworks follow two steps: global feature extraction and
model regression by human scores [12]. Mittal [6] trained
a regression-based support vector machine (SVM) for IQA
based on the locally normalized luminance coefficients in the
spatial domain. Chen [14] proposed a framework for com-
paring the different image enhancement algorithms by using
rank-SVM. In [16], Kang described a convolutional-neural-
network (CNN) algorithm, which combines feature learning
and regression to predict image quality score. They claim that
the modified network structure is more accurate than tradi-
tional NR-IQA methods. However, global feature extraction
is time consuming and labeling an image with numerical s-
core is consequentially affected by individual experience and
background so that it is ambiguous.

Nowadays, there is no a commonly acceptable method
for evaluating image dehazing performance [17]. This task
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faces with several challenges. First, it is important to ex-
tract the truly intrinsically salient features to describe hazy
images and distinguish a hazy image from natural haze-free
image. Second, comparing single indicator scores and utiliz-
ing regression-based prediction model are not consistent with
human visual perceptual mechanism. Third, there is no pub-
lic quality assessment benchmark dataset for image dehazing.
Therefore, improving the evaluation method of image dehaz-
ing performance needs to be solved and it will benefit many
image understanding and computer vision applications such
as haze removal algorithm [1,3], video segmentation [5,9] and
image matting and classification [13,15,18], etc.

In this paper, we present a cost-compensation classifi-
cation framework with psychological inference benchmark
(PIB) for evaluating the image dehazing performance. We
find that comparison or ranking mechanism of evaluation
procedure is more close to a classification process rather than
just predicting an absolute quality score. In this framework,
prior information is used to extract the inherently features of
hazy image firstly. And then, we compared these prior fea-
tures with PIB to eliminate the cognitive bias of individuals.
Finally, training a 3-grade classification network circularly
with normalized features until the iteration ends and updating
the PIB in every loop. The main contribution of our method
is to formulate the evaluation of image dehaizng problem
as a comparison framework by using classification methods,
rather than previous prediction-based approaches for IQA.

2. PROPOSED METHOD

2.1. Framework formulation
Image dehazing performance evaluation can be converted to
a classification learning problem. Let Q = {Qab ni

, n =
1, ..., N} denote the set of input features and E = {ei, i =
1, ...,M} is the label set (ranking result). Then, the training
set is given by X = {Qni , eni}Nn=1 with Qni∈RN . Where
n stands for the different priori features (Section 2.1), M is
the number of input dehazing algorithms. This classification
problem can be formulated as the estimation of the rank labels
by solving a convex optimization problem.

F = {f : Q ∈ Rn 7→ E} (1)

The optimization problem is given by min
i
f(Qni), s.t.

hj(Qni)=0, j = 1, ..., p, gk(Qni) ≤ 0, k = 1, ..., q, Qni ∈
X ⊂RN . Where p and q are the number of constraint. In this
formulation, the goal is to learn a decision function f from
training set X to classify the candidate algorithms in rank.
In this paper, we focus on the framework of dehazing quality
assessment method yet specific classifier.

Fig.1 shows the flowchart of the proposed framework.
Where f a.n denote the extracted priori feature value (Sec-
tion 2.1) of different dehazing algorithms, f org is for the
priori feature value which extracted from orginal hazy im-
age. Q ao.n is the comparison value which f a.n divided by

Fig. 2. Comparison of prior features.

f org , Q ab.n denote the Q ao.n compared with PIB for
normalization. Input the beforehand extracted prior features
into classification network, and output the ranking result of
compared dehazing performance with classification function.

2.2. Framework components
• The prior features extraction. Prior feature [19] contains
the intrinsic information of degraded image. It can be used to
distinguish a hazy image from natural haze-free image and
compare the image dehazing performance. Extracting the
salient prior features from hazy image will contribute to im-
prove the classification performance from both accuracy and
efficiency. Generally, lower prior feature values correspond
to better dehazing performance in our case.

Our classification-based network is founded on percep-
tually relevant prior features, including dark channel sparse-
ness, dispersion of color channels and textural similarity.
These features are extracted from local image patches to
capture the intrinsic statistics of natural images. Fig.2 illus-
trates the concept comparison of prior features from a sample
window Ω. There are two images of the same scene under
different weather conditions. Fig.2(a) shows the hazy group
and Fig.2(b) exhibits the haze-free group. A sample window
Ω is located on the same place in each image. The prior
features of each zoom-in patch are illustrated as follow.

Fig.2(a3),(b3) indicate the dark channel [1] of images. He
[1] claims that low-intensity pixels in at least one color chan-
nel often exist in most of the local regions. For any local patch
Ω(x) and any color channel τ ∈R{r, g, b}, the dark channel
Jdark of any image J is given by:

Jdark(x) = min
y∈Ω(x)

(
min
τ∈R3

Jτ (y)

)
(2)

The dark channel map of a haze-free image Fig. 2(b3) is
visually darker than the one of a hazy image Fig.2(a3). Thus,
we could utilize an appropriate threshold θ0 to build the s-
parse matrix of dark channel. If the dark channel value of
a local patch is lower than θ0, it could be redefined as zero.

1577



Fig. 3. Comparison of artificial images and their transmission
in hazy and haze-free condition.

In practice, assign value zero to every Jdark − θ0 < 0 ele-
ment, and then update the redefined dark channel matrix as
Ĵdark. Consequently, to properly extract the prior feature of
dark channel sparseness Ds, we can simply calculate ratio of
non-zero elements in Ĵdark. It is defined as follow:

Ds(τ,X,Ω) =

∑
Ω

∥Ĵdark(x)∥0

Ih×w
, x = 1, 2, ..., X (3)

Where ∥Ĵdark(x)∥0 is the L0-norm of Ĵdark(x), Ih×w is the
size of image and x ∈ X is each pixel in the image. Here-
inafter, we denote Ds(τ,X,Ω) simply as Ds. Theoretically,
the Ds of haze-free image is much sparser than the Ds of hazy
image.

Fig.2(a4),(b4) present the color (RGB) channels 3D scat-
ters consisting of all pixels in the sample window Ω. It reveals
the spatial distribution of the colors. Generally speaking, the
haze-free image is associated with a higher dynamic range.
The degree of dispersion can be used as prior feature descrip-
tor. Since the values of RGB channel is statistically indepen-
dent, the dispersion of color channels Ds is given by:

Dσ =
1

3

∑
στ

√√√√ 1

Ih×w

Ih×w∑
x=1

(Jτ (x)− µτ )
2 (4)

Where στ is the standard deviation of each color channel and
µτ is the mean value of each channel.

Fig.2(a5),(b5) show the color histogram of the zoom-in
patch. Compared with the haze-free image, it is obvious that
the color histogram of hazy image is more centralized and
skewing towards the bright side holistically.

In addition, texture is an intrinsic attribute of natural im-
age. Fig.3 illustrates two artificial images containing partic-
ular texture patterns from the TID database [20] and their re-
defined transmission. For easier observation, Fig.3(a2),(b2)
show the redefined transmission which the value t̄(x) is rede-
fined as opposite value (t̄(x) = 1 − t(x)∝Jdark). We find
that, in most of the local patch which texture adhere to the
surface, the texture detail in transmission of haze-free image
Fig.3(a2) is barely to see. However, the surface texture is
partially remained in transmission of hazy image Fig.3(b2).
The reason lies on the fact that transmission t is just related
to the scene depth d (expressed as t(x) = e−βd(x), where β
is a constant) and it should not be influenced by any surface

texture. Therefore, the textural information of transmission
can be regarded as a prior feature to distinguish dehazing per-
formance. In our case, we choose a grey level co-occurrence
matrix (GLCM) of the transmission to be a prior feature and
employ the correlation Dc, homogeneity Dh and contrast De

of GLCM as hue-shifting and textural features.
• Psychological inference benchmark (PIB). The new psy-
chological evidence shows that human prefers to evaluate im-
ages by comparing candidate with benchmark rather than as-
sess with numerical scores[21]. These comparing/ranking re-
sults of assessment tend to qualitative evaluation, such as bet-
ter, worse or almost the same. Hence, the logic of existing
learning-based evaluation methods, which totally depend on
regression-prediction models, is clearly different from human
visual perceptual mechanism and thus unreliable. Following
[21], we believe that human visual assessment is related to
psychological activity of individuals. The candidate image
should be compared with a benchmark in reality. Evaluat-
ing image dehazing performance in the absence of reference
image, we are subconsciously compared the candidate image
with our psychological expectation in fact. Hereinafter, we
call the psychological expectation as psychological inference
benchmark (PIB). It is not hard to imagine that different ob-
server will not always agree with the same PIB, but it does not
determine the final evaluation results (proved in sect. 3.3). In
practice, PIB can be appointed and also can be learnt from the
learning-network.
• Training network. As an example, a cost-compensation
classifier [22] is cyclically used to output the ranking results
until the iteration ends. The penalty weight of every empir-
ical Hinge Loss term in loss function is very sensitive to the
cost of top sequence and it is compensated by empirical val-
ue. In the implementation, we utilize the LIBSVM package to
implement the SVC with a radial basis function (RBF) kernel.

2.3. Monotonicity of prior feature
Note that we proved the prior features are valid for distin-
guishing hazy image from natural haze-free image in sect.
2.2, but it does not mean that value of extracted prior fea-
ture is consistently keep the same in variation trend with the
degradation increasing. In this case, we define a sign function
sgn(n) to verify the monotonicity of prior feature for further
study. Let H = [hi, i = 1, ..., D]1×D denote the degree of
haze density and V = [Vni , i = 1, ..., D]n×D represent the
value of each prior feature in different hazy density. For any
i < j, define a decision function as:
U = △V · △HT |n×1;△H = hj − hi > 0;△V = vj − vi
Then the sign function can be written as:

sgn(i, j) =

 1, U > 0
−1, U > 0 ∀ 0 < i < j
0, else

(5)

If sgn(i, j) = 1, the series of extracted feature value is mono-
tonic. Thus, it can be employed as potential prior feature.
Else, the candidate feature is not available.
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3. EXPERIMENT

3.1. Data and experimental protocol
Experiments are done using 120 most popular hazy im-
ages in previous research and 4 classic dehazing algorithms
[23][1][24][25] are chosen to generate the dehazed dataset.
As the inputs of our training network, we normalized the
feature vector with PIB and regarded the results of algorithm
[1] as PIB for simplifying the calculation. Label set is ob-
tained by comparing different dehazing performance in pair
and using sorting method to rank the dehazing performance
of candidate algorithms. The threshold value θ0 (sect.2.2) is
set as 64 because the first 64 gray-scale is pretty close to the
dark channel intensity according to the Mach Band [26].

3.2. Performance evaluation
In order to evaluate the performance of proposed method, we
use correlation coefficients (SROCC, KROCC, PLCC, shown
in Tab.1) to calculate the correlation between objective scores
(output results) and the subjective opinion scores (labels). Ta-
ble.1 presents the average correlation coefficients with 1000
iterations of blind IQA methods test on the database described
in sect.3.1. Compared with previous works, our method per-
forms better than the previous methods [6][7][8][27][17].

Table 1. Performance comparison of the blind IQA methods

Blind IQA method SROCC KROCC PLCC

BRISQUE [6] 0.3877 0.3126 0.3721
DIVINE [27] 0.5295 0.5078 0.5138

BLINDS-II [7] 0.4526 0.3967 0.4469
CORNIA-II[8] 0.4933 0.4072 0.4638

Ma[17] 0.6259 0.6017 0.6435
Ours 0.7371 0.6733 0.7041

3.3. Effects of PIB on accuracy and iteration times
Weather the evaluation method with PIB really works and
what effects did the PIB bring to our framework? To figure
out this question, we did some experiments as follow.
• With PIB and without PIB. The major difference between
evaluation methods with PIB and without PIB is the input la-
bel format. Some comparing experiments are designed on
the same dataset described in sect.3.1. Following [28], we
employ a ranking SVM to directly predict the ranks of test
set. The ranking SVM input labels which value from 1 to
the number of candidate algorithms. In contrast, the labels
of our method with PIB are ranged from 1 to 3, which stand
for simple semantic: better, worse and almost the same. In
practice, we calculate the SROCC between predicted ranks of
former method and labels. The highest SROCC of the rank-
ing SVM method is 0.3984 which is lower than the average
performance of the proposed method. We find the accuracy of
a multi-class classification method will be rapidly decreased
with the increasing of candidate algorithms.

Fig. 4. Performance evaluation of proposed method using d-
ifferent PIB and performance comparison of some different
image dehazing algorithms.

• Effection on accuracy and iteration times. We choose
the results of each candidate dehazing algorithms as PIB, and
evaluate the performance using correlation coefficients. As
shown in Fig.4 (a), the correlation coefficients should keep
in the same level with the changing of different PIB. So the
choice of PIB will neither influence the accuracy of evaluation
nor determine the final ranking result. But our method could
not give the final ranking result after first iteration when the
number of candidate dehazing algorithms is more than three.
We circularly utilize the same structure of classifier and up-
date the PIB in every loop. If M is the number of candidate
dehazing algorithms, then it is not hard to prove that the max-
imum iteration time is M -1. The iteration times will increase
linearly with the increasing number of candidate algorithms.

3.4. Image dehazing performance comparison
Since the evaluation method is established hereinbefore, we
test the average performance of each candidate dehazing al-
gorithm on the dataset described in sect.3.1. In Fig.4 (b), we
employ a frequency histogram to illustrate the rank results
of each candidate algorithm. It can be seen that He[1] ranks
in the first place and Fattal[23] came in the last upon most
occasions, the performance of other two algorithms is very
close. It comes to a conclusion that, on average, the dehaz-
ing performance in Fig.4 (b) is ordered in He[1]>Meng[25]
> Bao[24]> Fattal[23].

4. CONCLUSION AND FUTURE WORK

This paper presents a novel framework employing prior fea-
tures and RBF-based classifier to rank the performance of
different dehazing algorithms. Experiments show that the
method is able to evaluate the image dehazing performance
and rank them in order successfully. The framework is quite
simple but effective, and the evaluation results correlate well
with human judgments of visual quality. Our method have
some limitations as well. For instance, 1) The hazy image
dataset does not include large bright regions which usually ex-
ists in natural scene. 2) The classifier can be improved to give
the final result by only one iteration. Therefore, the future
improvements of the method will deal with some more effec-
tive prior that can accurately handle bright regions as well as
improve the structure of classifier.
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