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ABSTRACT

Deep multiple kernel learning is a powerful technique that
selects and deeply combines multiple elementary kernels in
order to provide the best performance on a given classifica-
tion task. This technique, particularly effective, becomes in-
tractable when handling large scale datasets; indeed, multiple
nonlinear kernel combinations are time and memory demand-
ing.

In this paper, we propose a new framework that signifi-
cantly reduces the complexity of deep multiple kernels. Given
a deep kernel network (DKN), our method designs its equiv-
alent deep map network (DMN), using multi-layer explicit
maps that approximate the initial DKN with a high precision.
When combined with support vector machines, the design of
DMN preserves high classification accuracy compared to its
underlying DKN while being (at least) an order of magni-
tude faster. Experiments conducted on the challenging Im-
ageCLEF2013 annotation benchmark, show that the proposed
DMN is indeed effective and highly efficient.

Index Terms— Deep kernel networks, deep map net-
works, multiple kernel learning, image annotation.

1. INTRODUCTION

A large variety of kernel-based algorithms has been success-
fully applied to different machine learning tasks including
kernel PCA for dimensionality reduction [1] and support
vector machines (SVMs) for pattern recognition [2, 3, 4, 5];
in these methods, the choice of kernels is highly determi-
nant. Kernels are symmetric functions that return similarity
between data and define inner products in high (possibly
infinite) dimensional spaces [6, 7]. Different kernels are
proposed in the literature including linear, Gaussian and his-
togram intersection. In practice, knowing a priori which
kernel (or a combination of kernels) is suitable for a given
classification task is not always possible and a variety of ma-
chine learning techniques are introduced for kernel selection
(see for instance [8, 9, 10, 11, 12]).

Multiple kernel learning (MKL) [8, 13, 14] is one of these
techniques that learns a (sparse or convex) linear combination
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of elementary kernels that best fits a given training set. Exten-
sions of MKL to nonlinear combinations are also proposed in
the literature and turn out to be more effective: for instance
Cortes et al. [15] propose nonlinear combination of polyno-
mial kernels while Zhuang et al. [16] introduce a multi-layer
nonlinear MKL framework, but restrict it to two-layers only.
In this method, nonlinear (exponential) activation functions
are applied to the resulting combination of basic kernels. In
a more recent work, Jiu and Sahbi [17] extend this method to
more than two layers using a semi-supervised setting. In all
these multiple kernel learning algorithms, there is a common
drawback: kernel evaluation is computationally expensive;
considering a dataset with N images, the computational com-
plexity of evaluating the gram matrix associated to a deep
kernel network (with L layers) reaches O(LN2). Hence, for
reasonably large values of L and N , this evaluation process
becomes clearly intractable.

It is widely known that positive semi-definite kernels can
be expressed as inner products involving (explicit or implicit)
maps in high dimensional Hilbert spaces. It is also known
that i) the map of a linear combination of kernels results from
the concatenation of their maps, and ii) the map of a product
of kernels is obtained using the Kronecker tensor product of
their maps. Consequently, kernel maps associated to linear
and polynomials kernels can be explicitly and exactly de-
fined. With explicit kernel maps, one may use very efficient
SVM learning algorithms based on stochastic gradient de-
scent [18] in order to handle very large scale training datasets,
without evaluating huge gram matrices and without solving
intractable quadratic programming problems. However, other
(and also effective) kernels, such as histogram intersection,
may not have exact explicit kernel maps, and different algo-
rithms have been proposed to approach these maps using, for
instance, the Nyström expansion cite Williams2001. Other
methods, e.g. Rahimi an Recht [19], consider instead random
Fourier feature map for stationary kernels by randomly sam-
pling the Fourier spectrum, while Li et al. [20] extend random
Fourier feature maps to group-invariant kernels. Other work
[21] gives explicit feature maps for additive homogeneous
kernels and derives finite approximation based on spectral
analysis.
Our work proposed in this paper also seeks to define explicit
kernel maps but for deep multiple kernels. It is related to a
recently proposed Convolutional Kernel Network [22], which
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Fig. 1. The three-layer deep kernel network (in left) and the sub-module of deep map network (in right). The blue dashed area of left figure
shows a sub-module of deep kernel network and each node corresponds to a kernel. In the right figure, the input is the approximated kernel
map corresponding to the input kernel in the left figure and each node corresponds to a feature.

approximates convolutional Gaussian kernels through deep
networks. However, our work differs from these approxima-
tion methods; indeed, we obtain deep map networks starting
from any deep kernel network, so our proposed method is not
specific to one type of kernels, but for any nonlinear and deep
combination of kernels.

In this paper, we propose a novel kernel map design al-
gorithm that transforms a given deep kernel network (DKN)
into its equivalent deep map network (DMN). The method
is greedy and proceed layer-wise by approaching (initial or
intermediate) kernels in DKN with inner products involv-
ing explicit maps. The resulting DMN is as effective as
its DKN counterpart while being highly efficient; indeed at
least an order of magnitude is saved when evaluating and
plugging DMN into SVMs for training and classification as
shown later in this paper which is organized as follows: first,
we briefly remind deep kernel networks in Section 2 and
then we introduce how to build their equivalent deep map
networks in Section 3. The experimental results using the
ImageCLEF2013 annotation dataset are shown in Section 4,
followed by the conclusion.

2. OVERVIEW OF DEEP KERNEL NETWORKS

A deep kernel network [16, 17] is a multi-layer architecture
that defines a nonlinear combination of elementary kernels.
Fig. 1, left shows an example of a three-layer deep kernel net-
work. Each unit corresponds to a kernel type, i.e., elementary
kernel (including Gaussian and linear in the input layer) and
combination of multiple kernels for intermediate and output
layers. A kernel κ(l)p (·, ·) for unit p at layer l is defined using a
nonlinear activation function1 g applied to a linear combina-
tion of kernels from layer (l−1) (as shown in the blue dashed
area in Fig. 1, left): {κ(l)p (·, ·) = g

(∑
q w

(l−1)
p,q κ

(l−1)
q (·, ·)

)
},

here {κ(l−1)q (·, ·)} correspond to kernels in layer (l − 1), and

1For instance, exponential function [16].

{w(l−1)
p,q } are the associated (learned) weights. Recursive for-

ward feed is performed until the output layer. In the inter-
mediate layers, hyperbolic functions are also used in order to
make learning numerically more stable while at the same time
ensuring that the obtained kernels are positive semi-definite.

Supervised DKN design aims to learn a discriminative
kernel for classification tasks [16, 17]. Briefly speaking, gra-
dient descent is applied to learn the network [23]. An SVM
is optimized on top of DKN using hinge loss and L2 regu-
larization. The minimization of this regularized hinge loss
is transformed into a dual maximization problem, which in-
volves kernels. The gradient of the resulting optimization
problem w.r.t the deep kernels is evaluated and used to up-
date the underlying weights. A semi-supervised setting for
deep kernel network design is also considered using an ad-
jacency graph that model similarity between labeled and un-
labeled data. Extra details about the definition and the opti-
mization of our deep kernel network can be found in [17].

3. DEEP MAP NETWORKS

In this section, we present our main contribution: how to
generate a DMN that best approximates a given DKN. The
proposed method proceeds layer-wise and generates explicit
maps (for different layers and units) that approximate the
underlying kernels in the DKN. The resulting DMN when
combined with SVMs, has equivalent (high) performances
compared to DKN, with an extra advantage of being highly
efficient as shown later in experiments.

Provided that all the elementary (input) kernels in the
DKN are positive semi-definite (p.s.d) and resulting from
the closure of p.s.d w.r.t different operations involved in
the design of DKN2, all kernels {κ(l)p }l,p will also be p.s.d.
Therefore, each κ(l)p (x,x′) can be written as 〈φlp(x), φlp(x′)〉
with φlp : X → H being a mapping that takes x from

2i.e., sum, product, exponential and hyperbolic activation functions (see
Section 2).

1572



the input space X to a high dimensional space H. As
φlp is not necessarily explicit (known), our goal is to de-
sign an alternative (explicit) mapping φ̂lp that guarantees

κ
(l)
p (x,x′) ' 〈φ̂lp(x), φ̂lp(x′)〉. When considering these map-

pings through different layers, the resulting DMN generates
explicit (deep) kernel features from input (shallow) features.

3.1. Input layer maps

In order to fully benefit from the explicit form of the DMN
(as designed in Section 3.2), initial kernel maps should be
explicitly known, in the input layer. It is clear that explicit
maps are straightforward for the linear kernel and can also
be defined for the polynomial. However, other kernels (more
powerful and more discriminating), such as the Gaussian and
the histogram intersection (HI), cannot be easily expressed
with explicit maps. In this section, we will show how to
define these maps for different input kernels.
Exact polynomial kernel map. the underlying kernel de-
fined as κ(1)p (x,x′) = 〈x,x′〉n can be rewritten as κ(1)p (x,x′) =
〈x⊗nx,x′⊗nx′〉, with⊗n being the Kronecker tensor prod-
uct applied n times. Hence, the setting of the initial maps is
φ
(1)
p (x) = x⊗n x.

Approximate HI kernel map. HI kernel is defined as
κ
(1)
p (x,x′) =

∑s
d=1 min(xd,x′d) (with xd being the dth

dimension of x). Considering x = (x1, . . . ,xs)ᵀ ∈ X , each
dimension xd of x is mapped using

ψ(xd) = 20 + 21 + · · ·+ 2k(x
d), (1)

with k(xd) =

⌊
Q

xd − `d
ud − `d

⌋
; here bzc stands for the largest

integer not greater than z ∈ R, Q ∈ N+, `d = minx{xd :
x ∈ X} and ud = maxx{xd : x ∈ X}. Note that ψ(.)
is a “decimal-to-unary” map; for instance 1 is mapped to 1,
2 is mapped to 11, 3 is mapped to 111, and so on. In what
follows, we reformatψ(xd) as aQ dimensional vector with its
k(xd) first dimensions equal to 1 and the remainingQ−k(xd)
dimensions equal to 0 [24].

Proposition 1 Given any x, x′ in X , for sufficiently large Q,
the inner product defined as 〈φ̂(1)p (x), φ̂

(1)
p (x′)〉, with

φ̂
(1)
p (x) =

(
ψ(x

1
)
ᵀ

√
u1 − `1
Q

,
√
`1, . . . , ψ(x

s
)
ᵀ

√
us − `s
Q

,
√
`s

)ᵀ

(2)

approximates the histogram intersection kernel κ(1)p (x,x′).

ψ(xd)ᵀ is the transpose of ψ(xd). Due to limited space, the
proof is omitted in this paper and can be found in [24].
Approximate Gaussian kernel map. In contrast to the pre-
vious kernels, approximate explicit maps associated to the
Gaussian are obtained using eigen decomposition (ED) as a
particular case of Eqs. (4), (5), i.e., with l = 1 (see Sec-
tion 3.2).

3.2. Intermediate/output layer maps

The explicit kernel map generation is achieved layer-wise us-
ing a greedy process. Assuming all the input kernel maps
obtained, the goal is to infer the maps of the subsequent lay-
ers. Recall that the intermediate/output kernels correspond
to the response of nonlinear activation functions applied to
linear combination of preceding (input or intermediate layer)
kernels. In this subsection, we consider that the weights of
these linear combinations (i.e. {w(l)

p,q}) are known; resulting
from DKN learning (see Section 2).

Let S = {xi}Ni=1 be a training set ofN samples in X , and
let Kl

p be theN×N gram matrix evaluated on S using the in-

termediate kernel κ(l)p (x,x′) = g
(
〈φ̂(l−1),cp (x), φ̂

(l−1),c
p (x′)〉

)
;

here φ̂(l−1),cp stands for the concatenation of the maps at layer
l − 1, defined as

φ̂
(l−1),c
p (x) =

(√
w

(l−1)
p,1 φ̂

(l−1)
1 (x)

ᵀ
, · · · ,

√
wp,nl−1

(l−1)φ̂
(l−1)
nl−1

(x)
ᵀ

)ᵀ

,

(3)

and nl−1 is the number of units in layer l−1. For any sample
x, the projected kernel map is defined as

φ̂(l)p (x)ᵀ =
(
κ(l)p (x,x1), . . . , κ

(l)
p (x,xN )

)
U, (4)

with U = αΛ−1/2 and α being the matrix of eigenvectors
obtained by solving

Kl
pα = αΛ, (5)

here Λ is the underlying (diagonal) matrix of eigenvalues,
sorted in a descending order and columns {α·i}i correspond
to the orthonormal eigenvectors associated to the eigenvalues
{Λii}. With the explicit map φ̂(l)p (in Eq. 4), one may show
that ∀xi,xj ∈ S, 〈φ̂(l)p (xi), φ̂

(l)
p (xj)〉 = κ

(l)
p (xi,xj). For any

samples x, x′ out of S (but drawn from the same distribution
as in S), it is clear that 〈φ̂(l)p (x), φ̂

(l)
p (x′)〉 κ

(l)
p (x,x′) as N

and the number of dimensions used in U increase.

3.3. Network design

Considering φ̂(l−1)p (x) at layer l − 1, and the maps defined
in (3),(4), three layers are incrementally added in the DMN to
obtain φ̂(l)p . The first layer provides the products between the
weights {w(l−1)

p,q } and the map φ̂(l−1)p (x) resulting into Eq 3.
The result of the first layer is fed to the second one to obtain
{g
(
〈φ̂(l−1),cp (x), φ̂

(l−1),c
p (xi)〉

)
}i; note that the weights asso-

ciated to this layer correspond to {φ̂(l−1),cp (xi)}Ni=1. Finally,
the output of the second layer are multiplied by the weights
U resulting into the explicit map in Eq. 4. Fig. 1, left shows
an example with a sub-module (in blue dashed box) and its
underlying map network in Fig. 1, right. Similar construction
is achieved for all the layers where the output of each layer is
fed as an input to its subsequent layer3.

3As our purpose is to construct approximate deep kernel maps for a given
(fixed) deep kernel network, weights w for the concatenation of kernel maps
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4. EXPERIMENTS

In this section, we compare the performance of the proposed
deep map network w.r.t deep kernel network in three aspects:
i) the discrimination power, ii) the relative approximation er-
ror of DMN w.r.t DKN and iii) their efficiency. We apply both
of them to image annotation task using the ImageCLEF2013
Photo Annotation database [25]. The latter has three parts:
training, dev and test sets; we use only the dev set as the
ground truth is available (released) for this subset only. The
dev set includes 1000 images belonging to 95 concepts. In
our experiments, we split the dev set into two subsets, one
is used to train our deep kernels while the remaining subset
is used for testing. Given a test image, the goal is to pre-
dict whether a given concept exists in that image. For that
purpose, we train a “one-versus-all” SVM classifier for each
concept (on top of the learned output kernel), and we use this
SVM in order to predict the presence of that concept in the
test image. The performances of our method are measured
using the F-scores (harmonic means of recall and precision)
at the concept and the sample levels (resp. MF-C and MF-S)
as well as the Mean Average Precision (MAP) [25].

In our experiments, we consider a combination of 10 vi-
sual features (provided by the ImageCLEF2013 challenge)
and 4 elementary kernels (including linear, polynomial with
2 orders, Gaussian4 and histogram intersection) in order to
train a three-layer deep kernel network (resulting into 40 input
units and 80 hidden units, as detailed in [17]). The only dif-
ference w.r.t [17] resides in the hyperbolic activation function
which is used instead of the exponential function; again, this
provides a better numerical stability and convergence when
optimizing the weights of the DKN using gradient descent.
Assuming the weights {w(l−1)

p,q } of DKN known (learned),
we build its equivalent DMN as shown earlier in Section 3;
note that we use the whole dev set (i.e., 1000 images) for ED
and we also use PCA to reduce the dimensionality of the input
kernel maps (whose dimension is high). We select the eigen-
vectors corresponding to the largest eigenvalues that preserve
99% of the statistical variance. Table 1 shows the resulting
map dimensionality obtained in the DMN (layer-by-layer).

framework 1st layer 2nd layer 3rd layer
DMN 26101 71291 766

Table 1. Map dimensionality (for the early 3 layers) in the DMN.

Given the DMN, we train SVM classifiers on top of the
kernel maps associated to the training fold and we evaluate
the performances on the test fold. We compare these perfor-
mances w.r.t SVM classifiers trained on top of DKN. Accord-

from different intermediate kernels remain fixed. However, they can also be
learned using back propagation algorithms, but this is out of the main scope
of this paper.

4with a scale parameter set to be average Euclidean distance between data
samples and their immediate neighbors.

framework MF-S MF-C MAP
DKN 46.23 30.00 55.73
DMN 45.84 31.54 55.16

Table 2. The performance for DKN and DMN.

database size DMN time DKN time RE
1K 105 92 0.07%
2K 191 589 0.95%
3K 296 1250 1.27%
4K 405 2302 1.44%
5K 488 3761 1.54%
6K 570 5340 1.16%
7K 688 7276 1.66%
8K 757 11023 1.70%
9K 866 12779 1.73%

10K 957 18116 1.75%

Table 3. Processing time (in sec) and relative errors of DMN w.r.t
DKN for different dataset cardinalities.

ing to Table 2 we observe that both networks have similar
(comparable) performances. Further comparisons using the
relative error (RE) measure

RE = 100×|〈φ̂(3)1 , φ̂
(3)
1 〉−κ

(3)
1 |/(|〈φ̂

(3)
1 , φ̂

(3)
1 〉|+|κ

(3)
1 |), (6)

between the output kernels of the two networks, show that
both networks produce similar gram matrices (see Table 3).
Finally, we measure the computational gain obtained with
DMN against DKN. We observe, in Table 3, a noticeable gain
in efficiency as DMN is (at least) an order of magnitude faster
compared to its DKN counterpart; more precisely, the com-
plexity of evaluating DMN increases linearly w.r.t the size of
the database while for DKN it increases quadratically. This
clearly corroborates the fact that DMN is as effective as DKN
while being at the same time highly efficient and more conve-
nient for large scale databases.

5. CONCLUSION

We introduced in this paper a novel method that approxi-
mates deep kernel networks with explicit maps. Our method
is greedy and proceeds layer-wise by expressing (input, inter-
mediate or output) p.s.d kernels as inner products involving
explicit maps. These maps are exactly defined for some input
kernels (including the linear and the polynomial) and tightly
approximated for others. The strength of the method is also
demonstrated through extensive experiments showing clearly
the high efficiency of DMNs and their effectiveness in order
to handle image annotation on the challenging ImageCLEF
benchmark.
As a future work, we are currently investigating the extension
of the deep map networks to other and larger scale bench-
marks.
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