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ABSTRACT

Semi-supervised learning seeks to build accurate classifica-
tion machines by taking advantage of both labeled and unla-
beled data. This learning scheme is useful especially when
labeled data are scarce while unlabeled ones are abundant.
Among the existing semi-supervised learning algorithms,
Laplacian support vector machines (SVMs) are known to be
particularly powerful but their success is highly dependent on
the choice of kernels.

In this paper, we propose an algorithm that designs ker-
nels as a part of Laplacian SVM learning. The proposed ker-
nels correspond to deep multi-layered combinations of ele-
mentary kernels which capture simple – linear – as well as
intricate – nonlinear – relationships between data. Our opti-
mization process finds both the parameters of the deep kernels
and the Laplacian SVMs in a unified framework resulting into
highly discriminative and accurate classifiers. When applied
to the challenging ImageCLEF2013 Photo Annotation bench-
mark, the proposed deep kernels show significant and consis-
tent gain compared to existing elementary kernels as well as
standard multiple kernels.

Index Terms— Multiple kernel learning, semi-supervised
learning, Laplacian SVMs, image annotation.

1. INTRODUCTION

Learning from labeled and unlabeled data, a.k.a semi super-
vised learning (SSL), has gained a considerable attention, in
the last decade, for different application domains [1, 2, 3]
including manifold learning [4] and object category recogni-
tion [3]. Initially introduced by [5], SSL is mainly targeted
to training problems with scarce labeled data. The general
recipe of SSL consists in building inference machines by
optimizing an empirical loss together with a regularization
criterion. While the former relies on few labeled data, the
latter uses abundant unlabeled sets in order to model the
topology of the manifold enclosing data and to smooth the
learned decision criteria. In practice, regularization criteria
are implemented using two major principles [6]: the first one
suggests that close data in a high density area of the input
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space should have similar labels while the second one consid-
ers that the decision boundary should exist in the low density
areas of the input space. Following these two principles,
several SSL algorithms have been proposed in the literature
mainly for classification tasks.

Transductive SVM [1] is one of these SSL techniques
which learns a decision criterion by optimizing binary-valued
class memberships that minimize a hinge loss both on labeled
and unlabeled data. This optimization process, even though
combinatorial, can be solved iteratively in two steps: first,
an inductive SVM is used to infer the values of the binary
memberships on the unlabeled data. Then, the parameters
of SVMs are updated accordingly using quadratic program-
ming. Resulting from the joint (and non-convex) optimization
of memberships and SVM parameters, the learning process
is not guaranteed to reach a global optimum. Other meth-
ods, as in [7], reshape semi-supervised SVMs as mix-integer
programming problems that minimize hinge loss criteria on
unlabeled data w.r.t binary choices of labels for classification;
however, this scheme is not applicable to large scale datasets.
As an alternative (and more tractable solution), Laplacian
SVM is introduced in [2]; it combines the geometry of the
marginal distribution of data as a regularization term inside
SVM objective function and provides a closed form solution.

Among these well studied kernel-based SSL models,
Laplacian SVM is particularly successful and also tractable.
However, its success is highly dependent on the choice of
kernels. The latter are defined as symmetric functions that
measure similarity between any two data, and when they are
positive semi-definite, they can be expressed as inner prod-
ucts in high dimensional Hilbert spaces. A relevant kernel
should reserve a high similarity iff two data belong to the
same class. Although different standard kernels exist in the
literature (including linear, Gaussian, etc. [8]), it is not al-
ways possible to known a priori which kernel is suitable for
a given task and domain specific knowledge is required in
order to handcraft appropriate kernels.

Much effort has recently been undertaken in order to
automatically design suitable kernels from training data
[9, 10, 3, 11, 12]. For instance authors in [13] learn ex-
plicit transductive kernel maps using Laplacian regulariza-
tion between labeled and unlabeled data while in [3] authors
learn context-dependent kernels that improve similarity by
integrating the context. Another family of kernel design al-
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Fig. 1. The deep kernel network.

gorithms, known as multiple kernel learning (MKL), seeks
to learn discriminative similarities from multiple elementary
kernels; indeed, several works [9, 14, 15, 16, 17] focus on
learning a linear combination of elementary kernels, by op-
timizing convex problems. However, these MKL algorithms
are only restricted to linear combinations. Other (includ-
ing nonlinear) combinations have recently been investigated
[18, 19, 20, 21, 22]; Cortes et al. [19] propose nonlinear
combinations of polynomial kernels while Cho and Saul [18]
develop Arc-cosine kernels that mimic the computation of
large neural nets. Zhuang et al. [23] propose a two layer
nonlinear MKL framework, where exponentials are used as
activation functions and authors in [24] extend this work to
more than two layers using a semi-supervised setting.

In this paper, we propose a SSL algorithm that learns
deep kernel networks as a part of Laplacian SVMs. This
work combines the strength of deep networks with the high
generalization capabilities of Laplacian SVMs resulting into
effective classifiers as shown through image annotation ex-
periments. This contribution is also related to our previous
work [24] but has major updates: indeed, the regularization
criterion used in this paper is different from the one in [24];
the latter, smooths kernel maps (in the Hilbert space) while
the former takes into account the topological structure of
(labeled and unlabeled) data and smooths the outputs of the
decision criteria. This results into improved label predic-
tion accuracy, compared to [24], as shown later in this paper
which is organized as follows: first, we briefly present our
deep kernel network in Section 2 and then we introduce, in
Section 3, the semi-supervised SVM algorithm that learns
both the parameters of deep kernels and Laplacian SVMs.
The experimental results on the ImageCLEF2013 annotation
database are shown in Section 4, followed by the conclusion.

2. OVERVIEW OF DEEP KERNEL NETWORKS

A deep kernel network [23, 24] in essence is a multi-layer
perceptron. It is fed with a vector of elementary kernel val-
ues between pairs of data in the input layer, and it includes
several layers that evaluate intermediate multiple kernels, and
finally it provides a final kernel value in the output layer.

Fig.1 shows an example of its architecture. The recursive
feed forward process calculates a nonlinear activation func-
tion over linear combinations of kernel values in the previous
layers until the output. This recursive form is defined as:{
κ
(l)
p (·, ·) = g

(∑
q w

(l−1)
p,q κ

(l−1)
q (·, ·)

)}
, here κ

(l−1)
q (·, ·)

stands for a kernel value at unit q and layer (l − 1), and
{w(l−1)

p,q }q correspond to the weights connecting layers (l−1)
and l (at unit p), which are initialized with positive values. In
this deep kernel network, g(·) is a nonlinear activation func-
tion; for instance, the hyperbolic or exponential functions
[23]. The former are chosen in order to make learning nu-
merically stable and also to preserve the positive definiteness
of all intermediate and output kernels. This network learns
an implicit kernel map representation for the inputs, instead
of deep explicit feature representations such as convolutional
neural networks [25].

The learning process involves two sets of parameters:
weights of the deep kernel network and SVM parameters.
As a joint optimization of these parameters is difficult (and
not convex), we adopt, instead, an alternating optimization
strategy. First, we fix the weights in the deep network and op-
timize the SVM parameters (using LIBSVM [26]); then, we
fix the parameters of SVMs and we update the weights in the
deep network using gradient descent and back-propagation
[25]. In this work, we use Laplacian SVMs on top of the
deep network. Again, this choice is motivated by the strong
generalization capabilities of Laplacian SVMs when model-
ing the topology of the manifold enclosing labeled as well as
unlabeled data in the training process (through Laplacian reg-
ularization), and this results into highly effective classifiers.
In the subsequent section, we introduce the mathematical de-
tails about the evaluation of the backward information from
Laplacian SVMs and the update of the weights in the deep
network.

3. LEARNING

Considering a multi-class problem (with K classes), we de-
fine L = {(xi,y

k
i )}`i=1 as a labeled training set and U =

{xi}`+u
i=`+1 as an unlabeled test set. In this definition, yk

i

stands for the membership of data xi to the kth class, i.e.
yk
i = 1 iff xi belongs to class k and −1 otherwise. Our goal

is to train a set of classifiers {fk}Kk=1 on top of a deep ker-
nel network (including L layers) in order to predict whether
a given test data xi ∈ U belongs to the class k depending on
the sign of fk(xi).

The general form of our SSL objective function has two
major parts: the first one is the standard empirical loss (clas-
sification error of the learned SVMs) while the second one
is a regularizer that controls the smoothness of SVM param-
eters as well as outputs of these classifiers. Although both
[24] and this work consider the topological structure of data
into learning, the two approaches are conceptually different.
Indeed, the method proposed in this paper smooths explicitly
the outputs of the SVMs while the approach in [24] considers
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SIFT C-SIFT RGB-SIFT OPP-SIFT COLORHIST GETLF GIST GIST2 HSVHIST LBP
lin 36.7/23.3/52.1 36.9/22.7/52.9 39.0/23.4/52.5 37.9/22.7/52.1 34.7/18.5/47.6 33.4/17.4/45.1 33.2/15.4/40.0 34.7/18.5/47.6 30.8/14.7/39.5 31.0/19.4/38.3
pol 33.4/17.7/49.4 37.1/19.3/52.1 32.7/18.6/48.8 32.1/18.7/48.7 36.7/21.7/51.5 37.7/21.5/51.3 34.5/17.8/48.2 35.2/18.9/48.3 36.2/17.3/46.9 35.5/21.1/46.1

RBF 35.4/22.7/52.0 39.4/22.1/53.5 36.0/23.4/52.8 37.6/23.3/52.5 41.1/22.0/53.2 36.6/19.5/50.8 36.8/18.5/49.0 33.8/19.4/48.6 37.2/18.1/49.0 36.3/20.8/50.3
HI 39.0/20.8/53.4 39.5/21.9/54.9 39.0/21.6/53.7 36.0/21.7/51.4 35.2/22.4/52.9 34.0/20.1/49.5 34.3/17.7/48.0 34.5/19.8/48.6 36.4/16.9/50.1 35.4/18.8/49.3

Table 1. This table shows the baseline performance of Laplacian SVMs (in %) for different elementary kernels; triple scores (././.) correspond
respectively to MF-S, MF-C and mAP performances.

a regularization term that smooths only the kernel maps in the
high dimensional Hilbert space. As the regularization in [24]
has no direct impact on the outputs of the SVMs, the regular-
ization used in this paper in highly preferred and turns out to
be more effective (as shown later in experiments).
Considering the previous statements, our objective function is
defined as

min
w,{fk}

K∑
k=1

Ck
∑̀
i=1

max
(
0, 1− yki fk(xi)

)
+

1

2

∥∥fk∥∥2H+
λ

`+u∑
i=1

∑
j∈Ni

A(xi,xj)(fk(xi)− fk(xj))2,

(1)

with w being the weights of the deep kernel network and Ck,
λ balances between empirical loss and regularization. The
first term, in this objective function, is the hinge loss defined
on L, the second term is the regularizer of the SVM parame-
ters, and the third term controls the smoothness of the SVM
outputs. In Eq. (1), Ni is the set of neighbors of xi and
A(xi,xj) is a similarity between any xi, xj defined as

A(xi,xj) =

{
1
2
[Hij + Sij ] ∀i, j ∈ {1, . . . , `}

Hij otherwise,
(2)

where Hij , Sij respectively correspond to histogram in-
tersection and Jaccard similarity; the latter is defined as
the ratio between label “intersection” and “union”, i.e.,
Sij =

∑K
k=1[(y

k
i = +1) ∧ (yk

j = +1)]/
∑K

k=1[(y
k
i =

+1)∨ (yk
j = +1)]. Considering a matrix form of the regular-

izer, Eq. (1) can be rewritten as

min
w,{fk}

K∑
k=1

Ck
∑̀
i=1

max
(
0, 1− yki fk(xi)

)
+

1

2

∥∥fk∥∥2H + λfᵀkLfk,

(3)
where L is the graph Laplacian and fk is a vector that gathers
the outputs of the kth SVM classifier applied to all data in L∪
U . Following the representer theorem (see [2]), the solution
of Eq. (3) can be written as fk(x) =

∑`+u
i=1 α

k
i κ

(L)
1 (x,xi).

By introducing Lagrange multipliers, (3) is transformed into

min
w

max
α,β

J = min
w

max
α,β

K∑
k=1

1

2
αk

ᵀ(
K

(L)
1 + 2λK

(L)
1 LK

(L)
1

)
αk

− αkᵀK(L)
1 DᵀYkβk +

∑̀
i=1

βki ,

(4)
here K

(L)
1 is the Gram matrix associated to the output layer

of the deep network. The vector αk corresponds to the (`+u)

SVM parameters, D = [I 0] is an ` × (` + u) matrix with I
being the `×` identity matrix and Yk = diag(yk

1 ,y
k
2 , . . . ,y

k
` ).

The derivative of Eq. (4) w.r.t αk implies

αk = (I+ 2λLK
(L)
1 )−1DᵀYkβk∗. (5)

Substituting Eq. (5) into (4), we get its corresponding dual
problem which is solved using a standard SVM solver. Then,
the optimal βk∗ is used in order to evaluate αk via Eq. (5).

Following an alternating (and iterative) optimization, we
fix αk (as described above) and then we estimate the weights
{w(l)

p,q} of the intermediate and the output kernels, using the
chain rule and the following gradient

∂J

∂K
(L)
1

=

K∑
k=1

1

2
αkαk

ᵀ
+ λ(L+ Lᵀ)K

(L)
1 αkαk

ᵀ

−
[
αk(Ykβk)ᵀ 0(`+u)×u

]
.

(6)

Finally, we update the deep kernel weights by standard back-
propagation (more details can be found in [24]). This alter-
nating optimization of the Laplacian SVM parameters and the
deep kernel weights continues until convergence.

4. EXPERIMENTS

In this section, we show the impact of the proposed deep
kernel network on the performance of image annotation using
the challenging ImageCLEF2013 Photo Annotation bench-
mark [27]. The underlying task corresponds to a multi-label
classification problem, in other words, one or several seman-
tic concepts are assigned to a given test image; in total 95
concepts are considered. The ImageCLEF2013 database has
three sets: training, dev and test sets. As the ground truth is
available (released) only on the dev set, we consider the latter
(with 1000 images) for evaluation and we randomly split it
into two halves; one for training and the other for testing.
Then, we train “one-versus-all” Laplacian SVMs (for all con-
cepts) on top of the deep kernel network and we use the signs
of these SVMs to assign concepts to test images.
Performances are measured using the F-scores (harmonic
means of recall and precision) at the concept and the sample
levels (resp. MF-C and MF-S) as well as the mean Average
Precision (mAP) [27]. We consider a combination of ten dif-
ferent features (provided by ImageCLEF2013 challenge) and
four elementary kernels (linear, polynomial with 2 orders,
Gaussian1 and histogram intersection) as an input to our deep

1With a scale parameter set to average Euclidean distance between data.
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Fig. 2. This figure shows annotated samples using histogram intersection kernel on C-SIFT features (“single”), supervised learning on 4-
layer network (“sup”) and semi-supervised learning on 3-layer network (“semi”) respectively. “GT” means ground-truth. “Y” (resp. “N”)
stands for the presence (resp. absence) of a given concept in an image.

kernel network. Tab.1 shows the (baseline) performances of
Laplacian SVMs using different combinations of elementary
kernels and features. We observe that histogram intersection
(applied to C-SIFT) provides the best baseline performances.

Architecture method MF-S MF-C mAP

Baseline GMKL [17] 41.3 24.3 49.0
2LMKL [23] 45.0 25.8 54.0

semi DKL[24] 46.8 29.5 58.5

2-layer KL sup 45.0 25.8 54.0
semi 46.8 28.6 58.9

3-layer KL sup 46.0 29.5 55.8
semi 47.8 30.0 58.6

4-layer KL sup 46.6 29.6 56.3
semi 45.5 28.4 58.4

5-layer KL sup 46.5 29.3 56.2
semi 46.6 28.1 57.3

Table 2. The performance of different baselines and Laplacian deep
kernel learning w.r.t different number of layers in the deep network.

We train our deep kernel network using the method de-
scribed in Section 3. The input layer has 40 units (resulting
from the combination of ten features and four elementary ker-
nels) while each intermediate layer has 80 units. In all these
units, different activation functions are adopted; hyperbolic
for intermediate layers and exponential for the output layer.
Note that hyperbolic functions act as normalizers and make
the learning process numerically (more) stable2.

As a matter of comparison we also consider a supervised
setting in order to train our deep kernel network (i.e., λ = 0).
For both supervised and semi supervised learning, we chose
the penalty parameter Ck using 3-fold cross validation (on
the training set) with values ranging from 2−4 to 28. Simi-
larly to Ck, we select the best parameter (λ in [2−10, 24]) for
the semi supervised setting. All the performances, including

2This observation is made after extensive comparison w.r.t the previous
work in [24] where exponential functions were instead applied in the inter-
mediate layers; and this required extensive tuning to obtain convergence.

different MKL methods ([17, 23]) and SSL on 3-layer deep
kernel network in [24], are depicted in Tab. 2. Some annota-
tion examples are also shown in Fig. 2. From these results,
we observe that
i) SSL with the deep kernel network (mainly with 3 layers)
outperforms SSL with elementary kernels and other compara-
tive approaches; indeed, the underling MF-S, MF-C and mAP
scores reach 47.8%/30.0%/58.6% respectively and this corre-
sponds to a substantial gain compared to histogram intersec-
tion on the C-SIFT features.
ii) The accuracy of the classifiers increases when the learned
kernel is sufficiently deep, and stabilizes afterwards. The best
results for supervised learning are achieved with a 4-layer
network (46.6%/29.6%/56.3%), but we still get an extra gain
when using semi supervised learning with a 3-layer network.
In these results, SSL of deep kernel networks with Laplacian
SVM, obtains the best overall performances.
iii) For 4 and 5-layer networks, the performance of Lapla-
cian SVMs slightly decreases compared to 3-layer network;
this may result from the lack of labeled data compared to the
complexity (number of parameters) of 4 and 5 layer networks.

5. CONCLUSION

We introduced in this paper a novel semi supervised deep ker-
nel learning algorithm. The proposed method considers the
topology of labeled and unlabeled data as a part of kernel
design resulting into better discrimination. This learning is
achieved by optimizing an objective function that mixes em-
pirical error and Laplacian regularization. Alternating opti-
mization is used and provides us with the parameters of the
Laplacian SVMs as well as the weights of the deep networks
that define the best nonlinear combination of multiple ele-
mentary kernels. Experiments conducted on the challenging
ImageCLEF2013 Photo Annotation benchmark show that the
proposed kernel design framework is effective compared to
different baselines as well as supervised deep kernel learning.
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