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ABSTRACT

In video surveillance as well as automotive applications, so-called

fisheye cameras are often employed to capture a very wide angle

of view. As such cameras depend on projections quite different

from the classical perspective projection, the resulting fisheye image

and video data correspondingly exhibits non-rectilinear image char-

acteristics. Typical image and video processing algorithms, how-

ever, are not designed for these fisheye characteristics. To be able

to develop and evaluate algorithms specifically adapted to fisheye

images and videos, a corresponding test data set is therefore in-

troduced in this paper. The first of those sequences were gener-

ated during the authors’ own work on motion estimation for fish-

eye videos and further sequences have gradually been added to cre-

ate a more extensive collection. The data set now comprises syn-

thetically generated fisheye sequences, ranging from simple patterns

to more complex scenes, as well as fisheye video sequences cap-

tured with an actual fisheye camera. For the synthetic sequences,

exact information on the lens employed is available, thus facilitating

both verification and evaluation of any adapted algorithms. For the

real-world sequences, we provide calibration data as well as the set-

tings used during acquisition. The sequences are freely available via

www.lms.lnt.de/fisheyedataset/.

Index Terms— Data Set, Fisheye Video Sequences, Test Im-

ages, Synthetic Sequences, Sensor Data

1. INTRODUCTION

Automotive applications like advanced driver’s assistance systems

often require very large fields of view (FOV) to provide the neces-

sary information about the car’s environment. In video surveillance,

where it is also fundamental to survey large areas, an FOV of well

beyond the common 40 to 60 degrees typical lenses provide is de-

sirable so that as few cameras as possible may be installed. Fisheye

lenses [1] are capable of achieving an FOV of 180 degrees and more

and are thus very much suited to the aforementioned application sce-

narios. In automotive applications, fisheye cameras are made use of

for lane detection [2] and similar assistance systems [3, 4]; in surveil-

lance scenarios, object tracking [5] and the generation of perspective

views [6] are important aspects.

A typical characteristic of fisheye imagery is the strong radial

distortion that is introduced by projecting a hemisphere onto the im-

age plane. This characteristic is not taken into account by conven-

tional image and video processing algorithms, which may perform

poorly when being applied to fisheye data. As fisheye cameras gain

more and more popularity, and are now used also by outdoor enthu-

siasts (the wide-angle GoPro camera is just one example), the need

for algorithms adapted to fisheye data thus arises.

During the development of new image processing algorithms,

test data such as the well-known Kodak image set [7] or the Tecnick
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Fig. 1. Top: Comparison of equisolid fisheye FOV and perspective

FOV (same sensor size). Bottom: Projections as functions of radius

r over incident angle θ with f = 1.8 mm and θmax = 90◦.

test images [8, 9] are frequently used. For multiview applications,

the Middlebury set [10] is available and for video processing and

coding, one might make use of the video set provided by ARRI [11]

and the HEVC Class A through F test video sequences [12], respec-

tively. When dealing with non-rectilinear imagery, however, one is

hard pressed to find freely available data sets similar to those men-

tioned. To the best of the authors’ knowledge, no such data set exists

for fisheye video sequences, either.

Because of this apparent lack of suitable fisheye material, a data

set first created by the authors during their previous work on mo-

tion estimation and temporal error concealment for fisheye video se-

quences [13, 14], and significantly extended since, is introduced in

this paper and made freely available via their website. Both syn-

thetically generated and actually captured fisheye video sequences

are provided, ranging from simple patterns to more complex scenes,

including automotive and surveillance content. For all sequences,

information on the acquisition process as well as further parameters

are provided. Making use of the synthetic sequences especially facil-

itates the verification and evaluation of new algorithms, since here,

all parameters are known and an exact projection function is used so

that calibration is unnecessary. To demonstrate the use of the data set

and to show a practical application for our sequences, we revisit our

previously published hybrid motion estimation method for fisheye
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Table 1. Perspective projection and classical fisheye projections.

Projection Equation FOVmax θmax

Perspective r = f tan θ ≪ 180◦

≪ 90◦

Equidistant r = fθ ∞ ∞

Equisolid r = 2f sin (θ/2) 360◦ 180◦

Stereographic r = 2f tan (θ/2) ≪ 360◦

≪ 180◦

Orthographic r = f sin θ 180◦ 90◦

Table 2. Global Blender configuration.

Engine Cycles Renderer
Lens Panoramic, Fisheye Equisolid (Equidistant)
Focal length 1.8 mm (not needed for equidistant model)
Field of view 185 degrees
Sensor size 5.20 mm, AUTO (5.81 mm, AUTO)
Resolution 1088 × 1088 pixels
Output PNG, RGBA, 8 bits, uncompressed
Noise pattern Varying for each frame

video sequences [13] and provide some new results for the synthetic

sequences at the end of the paper.

2. SYNTHETIC FISHEYE VIDEO SEQUENCES

Images and videos captured by conventional cameras follow the pin-

hole model, i. e., a perspective projection is used to map a scene to

the image plane. In contrast to that, fisheye lenses make use of pro-

jections which are able to capture a far wider FOV [1, 15]. The four

classical fisheye projections as well as the perspective projection are

compared in Table 1, with f , θ, and r denoting the focal length, in-

cident angle of light, and distance to the image center, respectively.

The maximum theoretically possible FOV as well as the correspond-

ing maximum θ are also given. Fig. 1 visualizes the different pro-

jection functions. Here, the limitations of the pinhole model’s FOV

become very evident when the distance r is actually interpreted as

half the sensor width. Quite obviously, a large FOV can only be

obtained by making use of a fisheye projection.

The classical fisheye projections are given by trigonometrical

expressions which can be easily inverted. To inspect basic character-

istics of fisheye images and their behavior in typical image process-

ing algorithms, we thus decided to create synthetic fisheye image

sequences so as to have control over the exact underlying model. As

a rendering software, Blender [16] was employed as it supports per-

spective as well as panoramic lenses. For the latter, both equisolid

and equidistant fisheye projections are available, which we made use

of for our synthetic sequences. The global settings for the equisolid

sequences are summarized in Table 2 with differing settings for the

equidistant versions denoted in parentheses. The choice of f = 1.8

mm is due to the actual fisheye lens used for the recording of the

real-world sequences. In order to generate circular equisolid fisheye

images, we derived a virtual sensor of size 5.20 by 5.20 mm as this

just allows capturing an FOV of 185 degrees when employing the eq-

uisolid model: 2r = 2f sin (θmax/2) ≈ 5.20, with θmax = FOV/2
and 2r representing the corresponding sensor width. For the equidis-

tant model, we require 2r = fθmax ≈ 5.81, i. e., a sensor size of 5.81

by 5.81 mm.

Table 3 provides the characteristics of the synthetic sequences.

Fig. 2 shows example frames of the majority of those sequences,

with synthetic pattern sequences on the left and synthetic scene se-

quences on the right side. The former make use of simple patterns

such as checkerboards arranged on a cube around a moving fisheye

Table 3. Characteristics of the synthetic sequences.

ID Name Frames Camera Scene Motion

A1 CheckercubeA 350 moving static TPZ
A2 CheckercubeB 350 moving static TPZ
A3 CheckercubeC 350 moving static TPZ
A4 CheckercubeD 350 moving static TPZ
B1 Rays 350 moving static TPZ
B2 Stars 350 moving static TPZ
C1 Lorem 350 moving static TPZ
C2 Alphabet 350 moving static TPZ
D1 Gradient 350 moving static TPZ
E1 Cards 350 moving static TPZ
E2 Clips 350 moving static TPZ
E3 Coins 350 moving static TPZ
E4 Fence 350 moving static TPZ
E5 Flowers 350 moving static TPZ
E6 Pencils 350 moving static TPZ

F1 Street 1800 moving static TZ
F2 CarsA 121 static moving T
F3 CarsB 121 static moving T
G1 PoolA 752 moving static T
G2 PoolB 748 moving static T
G3 PoolNightA 320 moving moving TP
G4 PoolNightB 320 static moving T
H1 Room 400 static moving T
H2 LivingroomA 111 moving static R
H3 LivingroomB 82 static moving T
H4 LivingroomC 82 moving static T
J1 HallwayA 600 moving static ZP
J2 HallwayB 120 moving moving RT
J3 HallwayC 120 static moving T
J4 HallwayD 500 moving static TP
K1 PillarsA 550 static moving T
K2 PillarsB 550 static moving T
K3 PillarsC 550 moving moving T

T: Translation, Z: Zoom, P: Pan, R: Rotation

camera, which is identical for sequences A1 through E6 and provides

translational motion as well as a horizontal pan, zoom, and verti-

cal pan. CheckercubeC, CheckercubeD, Rays, Stars, and Lorem are

based on images taken from the artificial image set of the Tecnick [8]

library. CheckercubeC can also be made use of for calibration pur-

poses. As the underlying model is mathematically exact, it can be

used to verify calibration methods based on checkerboard patterns

such as [17]. Cards, Clips, Coins, Fence, Flowers, and Pencils use

images taken from the new Tecnick [9] image set.

For the synthetic scene sequences, we combined several object

models available through [18] to create suitable scenes. We then

added the fisheye camera, set both camera and object motion as de-

sired, and thus generated more realistic sequences. The motion be-

tween two consecutive frames was generally chosen to be minor.

Therefore, the frame rate should be set to 50 Hz during playback.

Depending on user preference, a lower frame rate (starting from 25

Hz) may also be reasonable. If needed, the sequences can be tempo-

rally subsampled to create more pronounced motion patterns.

3. REAL-WORLD FISHEYE VIDEO SEQUENCES

Apart from synthetic sequences, the data set also contains a num-

ber of real-world sequences that were captured with an actual fish-

eye camera. The camera employed was a Basler ace acA2000-50gc

which uses a GigE interface for recording up to 50 frames per sec-
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Fig. 2. Example images of some of the synthetic equisolid fisheye sequences.

ond with a resolution of 2048×1086 pixels. The raw output im-

ages are saved in 12 bit Bayer GR format. As a lens, the Fujinon

FE185C057HA-1 fisheye was used. This fixed-focus lens has a fo-

cal length of 1.8 mm, a manually operated iris range of F1.4∼F16,

and allows capturing an FOV of 185 degrees. As the camera contains

a 2/3 inch sensor, the lens thus creates circular fisheye images.

For our data set, we chose mainly indoor scenes, including

surveillance scenarios, as the large FOV easily leads to overexposed

areas which are difficult to control. An advantage of indoor locations

is given by the many straight lines that can be found on ceilings,

furniture, etc., and as straight lines are indeed not straight when cap-

tured with a fisheye camera, they serve as the prime characteristic in

almost every sequence. Despite the difficulty of exposure control,

some outdoor sequences were recorded representing automotive

and surveillance scenarios. Both exposure time and aperture were

adjusted to the respective lighting conditions and may be taken from

Table 4, where the characteristics of the real-world sequences can

be found. The target frame rate was set to a constant 40 frames per

second, but may actually be less than that. Since the circular fisheye

images occupy a roughly square sensor area, all images recorded

have a cropped resolution of 1150 ×1086 pixels and may be further

cropped as needed. All sequences are provided in both raw image

12 bit TIFF format (sensor data) and in 8 bit PNG format (output

data). For the latter, the AHD [19] algorithm was employed for

demosaicking preceded by white balancing and followed by gamma

correction in order to create a pleasing subjective impression of the

scene. Fig. 3 provides example frames for many of the real-world

sequences.

Since actual fisheye lenses rarely follow one of the models de-

scribed in section 2, only a calibration helps to determine the camera

parameters. We thus also provide calibration images in our data set,

which can be used with calibration methods that are based on a cali-

bration pattern. The provided images show a checkerboard pattern at

different angles and positions and have been successfully tested for

calibration via the OcamCalib Toolbox version 3.0 [17]. The cali-

bration results are made available along with the calibration images.

4. FISHEYE MOTION ESTIMATION

As initially motivated, conventional video processing algorithms do

not take into account the fisheye characteristics. Traditional block-

matching motion estimation (ME) [20], for example, is based on

a translational motion model as this is the assumed predominant

kind of motion found in typical video sequences. Since this kind

of ME method works in a block-based manner, it is suited to global

and local translational motion alike. With fisheye video sequences,

however, the translational motion model is no longer valid. In [13],

we therefore introduced a hybrid ME technique adapted to equisolid

fisheye data which introduces suitable projections based on the equi-

solid fisheye model so as to be able to exploit the translational model

while at the same time taking the fisheye characteristics into consid-

eration. A small subset of the synthetic sequences presented here

has already been used for evaluating this method. We would now

like to provide some additional results and thereby show that it is

indeed necessary to adapt conventional image and video processing

techniques to fisheye data. To that end, Table 5 provides a compar-

ison of traditional, translational motion estimation (TME) with our

hybrid technique (HME). The search range and block size employed

here were 64 and 16 pixels, respectively. Details about the algorithm

as well as further settings may be taken directly from [13]. With

average obtainable gains of up to 2 dB, the need for fisheye adapta-

tions is clearly given and thus, our proposed data set aims at helping

develop these adaptations.
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Fig. 3. Example frames of some of the real-world sequences.

Table 4. Characteristics of the real-world sequences.

Name Frames Camera/Scene: Exposure Aper-
Motion Time ture

TestchartA 300 static/moving: T 10 ms F4
TestchartB 300 static/moving: T 10 ms F4
TestchartC 500 static/shaky: T 10 ms F4
AlfaA 500 static/moving: T 10 ms F4
AlfaB 500 static/moving: T 10 ms F4
AlfaC 500 static/shaky: T 10 ms F4
LibraryA 500 moving/static: Z 20 ms F1.4
LibraryB 487 moving/static: T 20 ms F1.4
LibraryC 252 moving/static: P 20 ms F1.4
LibraryD 300 shaky/static: T 20 ms F1.4
LibraryE 300 shaky/static: T 20 ms F1.4
CarparkA 302 static/moving: T 15 ms F6
CarparkB 982 static/moving: T 15 ms F6
CarparkC 1387 static/moving: T 15 ms F6
DriveA 1251 moving/static: ZP 1 ms F6
DriveB 400 moving/moving: ZPT 1 ms F6
DriveC 400 moving/static: ZP 1 ms F6
DriveD 863 moving/static: TP 5 ms F16
DriveE 420 moving/static: T 5 ms F16
ElevatorA 321 static/moving: T 15 ms F4
ElevatorB 211 static/moving: T 15 ms F4
ElevatorC 136 static/moving: T 15 ms F4
ElevatorD 216 static/moving: T 15 ms F4
LabRoomA 650 static/moving: T 15 ms F4
LabRoomB 241 static/moving: T 15 ms F4
ClutterA 500 moving/static: T 30 ms F1.4
ClutterB 500 moving/static: T 30 ms F1.4
LectureA 846 moving/static: P 15 ms F4
LectureB 461 moving/static: T 15 ms F4

Calibration – static/various angles 15 ms F4

T: Translation, Z: Zoom, P: Pan

5. CONCLUSION

This paper introduced a data set of fisheye video sequences that may

be used in the development of new image and video processing al-

Table 5. Average luminance PSNR results and gain per sequence.

Sequence (frames tested) HME TME Gain

CheckercubeC (34) 32.62 dB 30.59 dB 2.03 dB

Alphabet (34) 21.33 dB 19.58 dB 1.76 dB

Rays (34) 28.08 dB 26.77 dB 1.31 dB

PoolA (74) 39.76 dB 37.85 dB 1.91 dB

PoolNightA (63) 35.80 dB 34.40 dB 1.40 dB

PillarsA (109) 42.42 dB 40.74 dB 1.68 dB

gorithms designed for fisheye imagery. While one part of the data

set comprises real-world sequences captured with an actual fisheye

camera, including material for automotive and video surveillance

scenarios, the other part of the set provides synthetic fisheye se-

quences generated in Blender. Due to their mathematical exactness,

the synthetic sequences are especially useful as ground truth data

on which novel algorithms may initially be tested. Parameters like

focal length and resolution were chosen such that the synthetic se-

quence characteristics are very similar to the real-world sequence

characteristics. Any algorithms should thus be very well applicable

to both categories of sequences. For the real-world sequences, cal-

ibration images and results are provided so as to allow adaptation

to more realistic camera parameters. The need for fisheye adap-

tations was demonstrated with a brief excursion into fisheye mo-

tion estimation. Further sequences and ground-truth motion infor-

mation for the synthetic sequences are currently being worked on

and will be progressively made available via the authors’ website

www.lms.lnt.de/fisheyedataset/.
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