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ABSTRACT
This paper proposes a novel approach to athlete tracking in s-
ports videos. It follows the framework of Compressive Track-
ing (CT), but extends it by two manners, i.e. scale refinement
as well as occlusion recovery. For the former, an objectness
method, namely Edge Box (EB) is adopted to generate pro-
posals, replacing the fixed sampling box in CT, which better
fits the scales of the candidate objects. For the latter, a candi-
date obstruction based solution is presented, which makes use
of additional trackers to detect possible obstructions especial-
ly the ones possessing highly similar appearances as the target
one, and relocate the target as occlusion ends. Therefore, the
proposed method inherits the advantage of CT in robust ob-
ject modelling and fast processing speed, and embodies the
tolerance to occlusion and scaling. We evaluate the proposed
method on a collection of videos of beach volleyball games,
and the experimental results and the comparison with recent
advanced trackers highlight its effectiveness.

Index Terms— Sports Video Analysis, Object tracking,
Occlusion, Scaling

1. INTRODUCTION

Sports video analysis has received increasing attention both in
academia and industry in recent years for its scientific chal-
lenges and promising applications. It involves in a large vari-
ety of research directions, containing data statistics, highlight
extraction, content insertion, computer assisted referee, tac-
tics analysis, etc. Among these directions, athlete tracking is
a major issue, which plays a fundamental role for automatic
processing. Object tracking aims to locate a moving objec-
t (or multiple objects) over time in the video, and it is a hot
topic within the domain of computer vision and intelligen-
t surveillance. The past decade has witnessed its progress in
many applications, such as traffic monitoring, pedestrian de-
tection and Human-Computer Interaction (HCI). Due to the
complexity and diversity in the real-world condition, various
approaches to object tracking are proposed in literature, and
they generally include two principal modules, i.e. appearance
representation and model update. The former one is how to
comprehensively describe the target object, including holistic
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template [1, 2], sparse representation [3, 4] and discrimina-
tive model [5, 6]. The latter one lies in accurately capturing
the appearance change as the object moves, e.g. template up-
date [7], online boosting [8] and incremental subspace update
[9]. A number of approaches claim that they are competent
at handling the cases in the public datasets, e.g. VIVID [10],
CAVIAR [11], but the video clips are only composed by lim-
ited (hundreds of) frames, which makes them problematic in
practice.

Different from the benchmark videos for general object
tracking, the sports video has some specific difficulties, which
make it even more challenging to track the athlete. On the one
hand, the athlete is frequently occluded, to which the majority
of the existing approaches are quite sensitive. Indeed, several
solutions have been investigated to improve the robustness to
occlusion. For instance, [12, 13] detect occlusions by using
the depth clue of the tracked object; [14, 15, 16] deal with it
through a combination of the motion and appearance of the
object by linear or non-linear dynamic models; and [17, 18]
handle this problem with the help of multiple cameras. How-
ever, the occlusion cases are not as tough as those in sports
videos, where the players (object and obstruction) often share
high similarity in appearance, including height, figure, dress-
ing, etc, leading to confusion in the current solutions. Fur-
thermore, these methods usually require more clues, e.g. in
the depth modality or from additional cameras, which are not
always available in the given situation. On the other hand, the
players in the sports video move rapidly everywhere within
the filed of view, incurring large scale changes. A straightfor-
ward solution is to vary the size of the candidate box so that
it best fits the scale of the object, but a fine tuning step needs
more computational expenditure while a coarse one tends to
fail when the scale drastically changes, where the balance is
hard to achieve. An alternative is to use scale invariant fea-
tures [19], such as SIFT, nevertheless, it also greatly increases
the time cost and the template size has to be sufficiently large
to extract enough features for matching. Such facts suggest
that the solutions are not applicable in this task.

A few attempts have been made to track the athlete in s-
ports videos. [20] tracks the players in basketball and hockey
games from the view of tactics analysis, and the authors try
to predict all the possible moving directions for players, but it
may incur failure for infinite possibilities. [21, 22] use parti-
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cle filters to predict the position and velocity of the players in
beach volleyball games. They separate foreground and back-
ground to make athlete modeling easier, but they lose many
cues in background to improve stability and accuracy.

In this paper, we propose a novel and powerful approach
to track the athlete in a given sports video captured by a sin-
gle static camera. It is based on Compressive Tracking (CT)
[23], but significantly improves it in two aspects, i.e. robust-
ness to occlusion as well as insensitivity to scaling. To deal
with occlusions, a candidate obstruction that moves towards
the target is considered to relocate the object as they separate
from each other, which in particular works when the object
and obstruction are similar. To handle the problem caused by
scaling, we replace the box sampled by CT with the proposals
detected by Edge Box [24], each of which best fits the size of
the possible object in it, for similarity measurement between
the object and candidate in multi-scale image feature space.
Therefore, the proposed method inherits the advantage of CT
in robust object modelling and fast processing speed, and em-
bodies additional tolerance to occlusion and scaling variation-
s. We evaluate the method on a collection of videos of beach
volleyball games, the experimental results and the compari-
son with recent advanced trackers highlight its effectiveness.

2. SCALING AND OCCLUSION ROBUST CT

Compared with general object tracking, athlete tracking in s-
ports videos suffers from severe scale changes and frequent
occlusion variations, and processing speed is also an impor-
tant indicator. Considering its decent performance and com-
putational simplicity, we follow the framework of Compres-
sive Tracking (CT) for athlete tracking in sports videos, and
extend it to deal with the aforementioned problems. For com-
pleteness, we review CT and describe the solutions to scaling
and occlusion subsequently.

2.1. Compressive Tracking

CT, recently proposed in [23], is an effective and efficient
method, which formulates the tracking problem as a detection
task. It uses an appearance model based on features extracted
in the compressed domain, and thus combines the advantages
of generative and discriminative approaches.

In appearance representation, a set of multi-scale discrim-
inative features are selected using information-preserving and
non-adaptive dimensionality reduction based on the theory of
compressive sensing. A small number of randomly generated
linear measurements prove sufficient to retain most of salient
information and achieve good reconstruction of the signal if it
is compressible, thus allowing efficient projection of the orig-
inal feature space to a low-dimensional compressed subspace.

For model update, when the object is initialized at the first
frame, positive candidates near the current location and nega-
tive ones far away from it are sampled at the next frame, and

the candidate with the maximal similarity score is used to de-
termine the current location and update the classifier.

Specifically, to capture appearance changes in real time,
positive and negative candidates, denoted as bpos and bneg
respectively, are sampled around the current location of the
tracked object. Each candidate is represented by a low di-
mensional feature vector v = (v1, . . . , vn)

T , and all the ele-
ments in v are supposed to be independently distributed and
modeled with a naive Bayes classifier as in [25];

H(v) = log

(∏n
i=1 p(vi|y = 1)∏n
i=1 p(vi|y = 0)

)
=

n∑
i=1

log

(
p(vi|y = 1)

p(vi|y = 0)

)
(1)

where we assume uniform prior, p(y = 1) = p(y = 0).
y ∈ {0, 1} is a binary variable representing the candidate la-
bel, and H denotes the bayesian classifier. (1) is used to score
every sampled box, and the one with the highest score is s-
elected as the new location of the target, which updates the
classifier simultaneously, denoted as

update(H(v), bpos, bneg) (2)

2.2. Refinement for Scaling

In [23], to deal with the scale problem, CT convolves the can-
didate with a set of rectangle filters at multiple scales. Each
filtered image is reshaped as a column vector, and all the vec-
tors are concatenated into a very high-dimensional feature for
appearance representation. Such processing provides CT with
some robustness to scale changes. However in sports videos,
the players often move at a quite high speed, which causes
the swift and frequent change in scale, and since the candi-
date box in CT is of a fixed size, the multi-scale feature based
representation cannot always be accurate. What is more, the
candidate box is generated by a sliding window within a cer-
tain distance, and an elaborate trade-off has to be made be-
tween the accuracy and time cost by choosing a proper step
length. To overcome these drawbacks, we adopt object pro-
posal techniques which output a number of windows that are
likely to contain individual objects, to refine those candidates.
In this study, we consider Edge Box (EB) [24] for its high
performance and low time complexity. EB first detects the
edges within a given region whose size is moderately bigger
than that of the object, and then locates all the proposals by
counting the number of edge lines in them. In contrast to the
candidates cropped by a fixed box in CT, the ones within the
produced proposals by EB have different sizes, which better
fit the possible objects in them. In the following, similar to
CT, the proposals within a certain distance are selected and
normalized in size to compare with the current object in the
multi-scale feature space, and the one with the maximal like-
lihood is finally predicted as the next location. Fig.1 demon-
strates the process of scale refinement by EB.

1527



Fig. 1. Process of scale refinement (CT candidate in the green
box and EB candidates in the red ones).

Fig. 2. Process of occlusion recovery (object in the green box
and obstruction in the red one).

2.3. Recovery in Occlusion

Due to the use of Haar-like features, CT presents better toler-
ance to occlusion than some advanced counterparts, e.g. MIL-
Track and Struck. However, as described in Sec.1, occlusion
in sports videos is more difficult, because the athletes of high
similarity often occlude each other. To handle this issue, we
present a novel solution. Considering that before occlusion,
there should exist one or more candidate objects approaching
the target one, we individually focus on the candidate(s). To
be more specific, when the new location of the target is deter-
mined, within a relatively larger area, we search the regions
with the variance values bigger than a pre-defined threshold
V arthr, as they tend to contain moving objects. Based on the
scores in classifier H , we further filter out the ones similar to
the target object according to a threshold Retthr, indicating
that there are another or more similar objects around the tar-
get. For simplicity, in this study, we only concentrate on the
candidate with the maximal likelihood:

b :
n

max
j=1

H(vj)

s.t.

{
variance(bj) ≥ V arthr (j = 1, 2, 3, · · · , n),
H(vj) ≥ Retthr (j = 1, 2, 3, · · · , n).

(3)
There are thus two classifiers to track the target object and

candidate obstruction simultaneously. The jaacard distance is
adopted to measure the overlap between them, and decide if
they occlude each other using a threshold Ovethr:

O(bi, bj) =

∣∣∣∣bi⋂ bj
bi
⋃
bj

∣∣∣∣ ≥ Ovethr (4)

If the candidate obstruction box is above that of the target

(the obstruction is nearer to the camera), the object is occlud-
ed. In this case, only the candidate obstruction tracker works
while the target object tracker stops. Similar to finding the
candidate obstruction, the algorithm relocates the target when
they separate from each other. Fig.2 illustrates such a process.
The whole procedure of this method is given in Alg.1.

Algorithm 1 Scaling and Occlusion Robust CT
Input: frame sequence: f1, f2, . . . , fn, classifier: H , initial

object: bini, frequency: M
Output: object sequence: b1, b2, . . . , bn

1: classifier: H, candidate = false, occlusion = false
2: for i = 0 to n do
3: if !occlusion then
4: if i % M == 0 then
5: EdgeBox(fi, bi−1)
6: else
7: SampleBox(fi, bi−1)
8: end if
9: CompressFeature, bi := max(H({vij}))

10: if !candidate then
11: if variance(box) ≥ V arthr, H({vij}) ≥ Retthr

then
12: Ci := max(H({vij})), candidate = true
13: end if
14: else
15: if overlap(bi, Ci) ≥ Ovethr then
16: occlusion = true
17: end if
18: end if
19: else
20: SampleBox(fi, Ci), CompressFeature
21: if variance(cij) ≥ V arthr, H({vij}) ≥ Retthr

then
22: bi := max(H({vij})),
23: occlusion = false, candidate = false
24: end if
25: end if
26: end for

3. EXPERIMENTAL RESULTS

To evaluate the method, we conduct experiments on the Beach
Volleyball (BeaVoll) dataset. The database, protocol, param-
eter tuning, and results are described in the following.

In contrast to general object tracking, there are very lim-
ited public benchmarks of sports videos. In this study, we use
the BeaVoll dataset, from General Administration of Sport in
China. It contains 30 video clips of beach volleyball games,
from 80 to 120 seconds. Each video is captured from a game
by a camera equipped at the end line of competition terrain,
and there hence exist variations in background, illumination,
body shape and clothing. The location of the player is manu-
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ally labeled at each frame as groundtruth. In our experiment,
the videos are downsampled from 1440×1080 to 432×240 in
resolution. 15 video clips are used in validation for parameter
tuning, and the others for test. Fig.3 shows some samples.

Fig. 3. Some samples in the BeaVoll dataset.

Trackers are usually evaluated using the precision rate or
the success rate as the indicator. Precision rate is the average
Euclidean distance between the center locations of targets and
groundtruths; however, if the tracker loses the object, the out-
put is random and the evaluation is less meaningful. Success
rate is the overlap of bounding boxes, which counts the num-
ber of successful frames where overlap is larger than the given
threshold, and this indicator is always reasonable. Therefore,
we adopt the latter as most recent studies do.

(a)

(b)

Fig. 4. Parameter tuning based on (a) object retrieval thresh-
old and (b) occlusion overlap threshold.

There are some important parameters crucial to our result-
s, including object retrieval threshold Retthr and occlusion
overlap threshold Ovethr. We set the values according to the
accuracy in validation. Fig.4 displays the performance using
the two parameters respectively. As shown in Fig.4 (a), when
Retthr is small, even though there is no candidate obstruc-
tion, the algorithm still probably mistakes a random box for
it. It rejects further detection of true candidate obstructions,
thus leading to failure in the subsequent. Similar to Retthr,
Ovethr should be adjusted as well.

We compare the proposed method with the state of the art
ones, including CT [23], ASLA [26], CSK [27], DFT [28],
ORIA [29], and IVT [9] when varying the overlap rate.

Fig. 5. Comparison between our method and the state of the
art ones in terms of success rate on the BeaVoll database.

4. CONCLUSION

In this paper, we propose an effective and efficient method to
track athletes in sports videos. It is based on CT, but improves
it in two aspects. Scale refinement is achieved by EB based
proposal generation and occlusion recovery is reached by in-
troducing the candidate obstruction based strategy. The pro-
posed method is evaluated on the BeaVoll database, and the
comparison with the state of the art trackers clearly demon-
strates its advantage for this task.
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