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ABSTRACT

In this paper, we cast tracking as a novel multi-task learning
problem and exploit various types of visual features. We use
an on-line feature selection mechanism based on the two-class
variance ratio measure, applied to log likelihood distributions
computed with respect to a given feature from samples of ob-
ject and background pixels. The proposed method is integrat-
ed in a particle filtering framework. We jointly consider the
underlying relationship across different particles, and tackle
it in a unified robust multi-task formulation. We show that
the proposed formulation can be efficiently solved using the
Alternating Direction Method of Multipliers (ADMM) with
a small number of closed-form updates. Both the qualitative
and quantitative results demonstrate the superior performance
of the proposed approach compared to several state of-the-art
trackers.

Index Terms— feature selection, multi-task learning, Al-
ternating Direction Method of Multipliers

1. INTRODUCTION

Visual object tracking is one of the critical problems in com-
puter vision. Various types of visual features including in-
tensity [1-4], Haar feature [5, 6], color [7], texture [8] and
superpixel [9] have been proposed.

A key issue addressed in our work is on-line, adaptive
feature selection for tracking. Our insight is that the feature
space that best distinguishes between foreground and back-
ground is the best feature space to be used for tracking. Mean-
while this choice of feature space will need to be continuous-
ly re-evaluated over time to adapt to changing appearances of
the tracked object and scene background. Kalman filter algo-
rithms are generally used to model object motion states in a
visual tracking. It is employed to assign feature confidences,
which ensures that the evolution of feature confidence is tem-
porally consistency by exploiting the feature discriminative
abilities in the current frame and feature confidences in the
previous frames.

This work was jointly supported by the National Natural Science Foun-
dation of China (No. 61374161) and China Aviation Science Foundation
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To overcome the problems mentioned above, we propose
to employ other visual features such as color, edge, and tex-
ture to complement intensity in the appearance representation
with a robust multi-task learning to solve the visual tracking
problem. The workflow is shown in Fig.1. Within the pro-
posed framework, the sparse representation for each feature
is learned as a linear combination of atoms from an adap-
tive feature dictionary, i.e. each feature has its own sparse
representation, which enables the tracker to capture different
statistics carried by different features. To exploit the inter-
dependencies shared between different particles, we impose
the l1,2-norm group-sparsity on the representation matrix to
learn the sparse representation jointly in a multi-task manner.
To handle the outlier particles from particle sampling, we de-
compose the sparse representation into two collaborative part-
s, thereby enabling them to learn representative coefficients
and detect outlier tasks simultaneously. An efficient Alternat-
ing Direction Method of Multipliers (ADMM) [10] scheme
is employed to obtain the optimal solution via a sequence of
closed-form updates.

Our contribution is three-fold: 1) we utilize multiple type-
s of features in a sparse representation-based framework for
tracking. Compared to previous related tracker, the new track-
er is not only able to take advantage of the robustness to oc-
clusion from sparse representation, but also introduces com-
plementary multiple-feature representation for robust appear-
ance modeling; 2) we treat every feature in each particle as an
individual task and jointly consider the underlying relation-
ship shared among different features and different particles
in a multi-task learning framework; 3) to capture the outlier
tasks that frequently emerge in the particle sampling process,
we employ a robust multitask scheme by decomposing the
coefficient matrix into two collaborative components.

2. OVERVIEW OF THE PROPOSED APPROACH

In our approach, four kinds of features are firstly extracted
frame by frame. Then the feature evaluation is carried out
to calculate the feature weight. Next, the particle filtering
tracking method is employed for each feature. Finally, the
tracking is completed by feature fusion.
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Fig. 1. The proposed tracking algorithm.

2.1. Feature Extraction

To take the advantage of complementary features, we em-
ployed four popular features: color histograms, intensity, his-
tograms of oriented gradients (HOG) [11] and local binary
patterns (LBP) [12]. HOG is a gradient-based feature that
captures edge distribution of an object. LBP is powerful for
representing object texture.

2.2. Object and Background Definition

We use a center-surround approach to sampling pixels from
the object and the background. That is, a compact set of pixels
(e.g. rectangle or ellipse) covering the object is chosen to
represent the object pixels, while a larger surrounding ring of
pixels is chosen to represent the background.

2.3. Discriminative Ability Calculation

We measure the discriminative ability [13, 14] of each feature
in current frame by computing the likelihood ratio between
the object feature and its corresponding background feature
as follows:

R̃i
t = max(0,min(1, log

max(F i
t (x, y), δ)

max(Bi
t(x, y), δ)

)), i = 1, · · · , N

(1)

Ri
t =

R̃i
t

ΣR̃i
t

(2)

Where F i
t (x, y) and Bi

t(x, y) are the ith features of the
object and the background at frame t respectively. δ is set as
0.005 empirically.

2.4. Object Tracking

We carry out the object tracking in particle filtering frame-
work. The particle filtering can be divided into the prediction
and the update steps:

p(sst|y1:t−1) =

∫
p(sst|xt−1)p(sst−1|y1:t−1)dsst−1 (3)

p(sst|y1:t) =
p(yt|sst)p(sst|y1:t−1)

p(yt)|y1:t−1
(4)

where ss1:t = {ss1, ss2, ..., sst} denotes the state vectors up
to time t and y1:t = {y1, y2, ..., yt} are observations variables.
p(sst|sst−1) is a dynamic model that describes the state tran-
sition, and p(yt|sst) is an observation model for each state.
For each state sst. Thus, the optimal object state at time t can
be determined by solving the maximum a posterior (MAP)
problem.

Kalman filter affords a solution to the feature evaluation
during a tracking process. In common sense, features of high-
er discriminative ability have larger confidences and vice ver-
sa. Therefore, we define the state of the Kalman filter for
feature evaluation as the combination of the confidence Rt

and its variation ”velocity” δRt of each feature. The mea-
surement of the filter is the discriminative ability vector at
frame t. Then the weight of the feature can be determined
by the prediction equation and the measurement equation of
a Kalman filter [14].

y = α1y1 + α2y2 + α3y3 + α4y4 (5)

where αi, i = 1, 2, 3, 4 is the normalized Kalman filter pre-
diction.

2.5. Two-norm based Representation and Decomposition

In our tracking model, the particles are represented by a linear
combination of templates in dictionary Dt, i.e.,

Xt = DtWt + Et (6)

where Wt is a coefficient matrix, Wt = [w1, w2, · · · , wn]t, Dt =
[d1, d2, · · · , d(NT )]t, NT is the number of template. In (6),
the Dt is decomposed into two part, row sparsity for capturing
the shared features among all particles and column sparsity
to identify the outlier noise simultaneously. Thus, the particle
representation in our tracker becomes the following form:

Xt = DtWt + Et = Dt(Lt + St) + Et (7)

Decomposing matrix Wt into two separate sparse matrix-
es (i.e., Lt and St) brings high robustness for the proposed
tracker. More specifically, we formulate our tracking model
as a group sparsity learning scheme:

minLt,St ∥ Xt −Dt(Lt + St)− Et ∥2F +λ1 ∥ Lt ∥1,2
+λ2 ∥ St ∥2,1 +λ3 ∥ Et ∥1,1,Wt = Lt + St (8)

where Lt is the row group sparsity component, St is the col-
umn group sparsity component and Et is the noise. The three
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Algorithm: group sparsity algorithm implemented by ADMM. 

Input: , ,  

Initialize , , (here  and  represent  and , respectively;  is omitted for clarity of the 

algorithm description in the following.) 

k=1, 

While stopping criterion is not met do 

Solve the convex optimization problem: 

 

, 

Perform the iterations of scaled ADMM algorithm: 
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where  denotes proximal method for  [16]. 

 

Solve the convex optimization problem with updated : 

 

, 

Perform the iterations of scaled ADMM algorithm: 

, 
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where  denotes proximal method for  [16]. 

 Solve the convex optimization problem with updated : 

 

, 

The scaled form of ADMM consists of the following iteration. 

, 

,   

,   

where  denotes proximal method for . 

    k = k+1; 

end while 

Output: solution , , , to equation (8). 

 

Fig. 2. The proposed tracking algorithm.

parameters λ1, λ2 and λ3 balance reliable construction and
joint sparsity, where λ1 regulates the row group sparsity on
Lt, λ2 controls the column group sparsity on St and λ3 is a
regularization parameter which encourages the error matrix to
be sparse.

2.6. Resolve Equation (8)

Equation (8) represents the key idea of our method. Resolv-
ing equation (8) is essential to efficiently compute matrix Wt.
While there are several optimization algorithms, we choose
the ADMM algorithm for its simplicity and efficiency. We
summarize our group sparsity algorithm implemented by AD-
MM for resolving equation (8) in Fig.2. More detail can be
found in [10, 15].

2.7. Template Update

To handle appearance variations, the target dictionary Dt is
progressively updated similar to [1], and the templates are
weighted in the course of tracking.

 CT IVT L1-APG L1 L2-RLS MIL MTT-L01 MTT-L11 WMIL Ours 

Caviar 68.5046 85.6776 24.8298 19.0748 144.9574 69.7605 65.2356 103.1512 88.6514 4.8362 

Caviar1 16.8755 33.3381 48.4095 106.8751 1.3008 87.2633 53.4084 101.8416 29.531 3.6022 

Caviar2 63.167 13.3922 5.8703 24.6669 16.3851 22.6452 4.8235 10.4497 62.0663 6.0703 

Cup 43.6092 1.6257 2.4408 2.9189 2.6194 40.9867 64.6413 159.8587 10.1017 3.1348 

DavidIndoor 16.5161 67.5226 31.2135 86.6966 20.8459 23.1548 88.3262 19.5485 23.577 14.4856 

Dog1 15.7522 45.5823 9.7048 52.7659 4.6743 16.8385 8.2277 9.7217 29.521 9.5283 

Faceocc 18.8312 64.9672 24.8161 40.7633 20.7714 32.9755 33.3148 164.7155 49.0825 17.4954 

Faceocc2 24.5455 63.7754 12.4189 41.2344 11.5001 21.4552 8.1904 29.6458 30.9168 14.9717 

Human 3.4695 359.7149 1.921 125.4265 393.4827 5.8683 3.2527 92.2673 16.3524 5.4127 

Jump 216.0381 234.5108 172.217 239.6197 234.287 219.8929 6.2736 121.3118 16.553 9.3426 

Shirt 12.2288 111.6935 21.7862 45.5775 87.4274 22.4791 72.3955 205.4118 26.456 7.473 

Shop 70.5524 7.8512 2.9598 3.9316 61.0245 15.3831 2.4224 23.0991 62.8289 6.8675 

Ucsdpeds 5.3104 11.4702 1.7455 43.7165 62.797 10.9856 1.2932 4.6251 12.555 5.2814 

Crossing 7.3319 78.4715 2.2177 2.7864 2.4461 5.8021 3.2711 42.5012 108.3541 2.8952 

David2 80.5788 48.9736 2.6076 58.8368 1.9651 14.3728 1.4139 2.9057 11.106 4.4797 

Freeman1 14.1436 74.6266 8.4877 57.1923 14.6514 14.7425 121.7953 111.3064 22.5456 14.106 

Head_motion 15.2259 27.0431 9.437 8.6842 8.2647 9.8749 8.2459 9.4153 89.1344 8.7958 

Jogging 107.8466 22.9099 85.1418 87.5305 96.0912 86.7589 128.4964 104.8154 95.3137 7.3243 

Mhyang 31.5107 51.5048 3.6666 35.4632 9.7712 53.9352 4.4252 19.2103 43.3887 6.0334 

Motocross-2 10.2428 42.9039 31.7723 54.4645 35.8466 21.4 63.9674 13.4824 65.1716 11.1312 

Wpolarbear 13.4378 21.9712 9.4285 30.2203 12.7469 11.8766 12.092 19.6445 32.9759 7.0886 

Xrocky 170.3048 160.0649 5.4093 97.6778 9.8632 168.8514 82.5297 204.0934 115.5571 9.4632 

 

Fig. 3. The average tracking errors. The error is measured
using the Euclidian distance of two center points from the
ground truth. The last row is the average error for each tracker
over all the test sequences.

3. EXPERIMENT

Performance of the proposed tracker is analyzed on 22 chal-
lenging video sequences and compared with seven state-
of-the-art tracking works including the Incremental Visual
Tracking (IVT) [22], L1 tracking (L1T) [1], L1-APG tracking
[2], multi-task tracking (MTT-L01, MTT-L21) [3], Multiple
Instance Learning tracking (MIL) [5], compressive tracking
(CT) [6], Wacv12 [17], WMIL [21], LSST [19], L2-RLS
[18]. The sequences include either a nonrigid object or an
object that undergoes significant appearance changes. The
tracker was implemented in Matlab and runs at approximate-
ly 1 frame per second on an Intel Core i5. The trackers are
run 3 times and the average results are reported for each video
clip. We would like to emphasize that all the parameters were
kept constant for all experiments.

3.1. Quantitative Comparison

We evaluate the above-mentioned algorithms using the cen-
ter location error as well as the overlapping rate [20], and the
results are shown in Fig.3 and Fig.4. Overall, the proposed
tracking algorithm achieves the best or second best results in
most sequences in terms of both success rate and center loca-
tion error.

3.2. Qualitative Comparison

Scale Change and Occlusion: Caviar2 and Shop contain sig-
nificant occlusion and scale change. Our method tracks the
target person well until the end of these sequences. In the
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 CT IVT L1-APG L1 L2-RLS MIL MTT-L01 MTT-L11 WMIL Ours 

Caviar 0.158 0.146 0.22 0.424 0.024 0.162 0.156 0.15 0.138 0.988 

Caviar1 0.3927 0.3089 0.3037 0.301 1 0.0079 0.3037 0.2984 0.0288 0.9843 

Caviar2 0.27 0.302 0.914 0.4 0.342 0.036 0.982 0.424 0.012 0.936 

Cup 0.4587 1 0.9967 1 1 0.4455 0.4752 0.1617 0.7294 1 

DavidIndoor 0.2359 0.2273 0.2078 0.2121 0.2273 0.0606 0.2857 0.3701 0.2143 0.6364 

Dog1 0.6022 0.223 0.9993 0.5659 0.9993 0.5778 0.8652 0.7333 0.2222 0.7926 

faceocc 0.5011 0.0609 0.2167 0.1907 0.3309 0.0011 0.0158 0.1151 0.0011 0.55 

Faceocc2 0.5767 0.3877 0.4147 0.4442 0.7067 0.5607 0.9607 0.8613 0.5546 0.7914 

Human 0.5049 0.0243 0.9078 0.3058 0.0218 0.4029 0.9976 0.2451 0.267 0.9345 

Jump 0.1842 0.0219 0.3509 0.1096 0.136 0.1272 0.7588 0.3158 0.307 0.8377 

Shirt 0.7939 0.0126 0.6036 0.3396 0.0053 0.7056 0.0053 0.0053 0.2818 0.9853 

Shop 0.3393 0.4036 0.9768 0.9768 0.3643 0.3393 0.9929 0.3625 0.0125 0.8411 

Ucsdpeds 0.5594 0.0383 1 0.341 0.023 0.0575 0.8352 0.4751 0.0038 0.6858 

Crossing 0.85 0.025 0.8583 0.9583 0.2417 0.8167 1 0.424 0.0083 0.9583 

David2 0.0019 0.0857 0.8361 0.257 0.9646 0.0037 1 0.1617 0.3259 0.9311 

Freeman1 0.6055 0.0123 0.7393 0.1687 0.3129 0.0706 0.1442 0.3613 0.0828 0.6319 

Head_motion 0.9489 0.6711 0.7545 0.9838 0.9728 1 0.983 0.2451 0.0694 0.997 

Jogging 0.2248 0.2345 0.2248 0.0065 0.0423 0.2085 0.2248 0.3158 0.1889 0.8502 

Mhyang 0.002 0.294 0.9913 0.5745 0.7517 0.002 1 0.0493 0 0.9456 

Motocross-2 0.8696 0.3043 0.5217 0.2609 0.3913 0.6087 0.5652 0.0053 0.0435 1 

Wpolarbear 0.6173 0.2588 0.7305 0.4286 0.6092 0.7008 0.6846 0.5445 0.1078 0.8464 

Xrocky 0.0533 0.1036 0.5 0.0414 0.7456 0.0562 0.5207 0.1183 0.003 0.6479 

 

Fig. 4. Average overlap rate. The best three results are shown
in red, blue, and green fonts.

 

Fig. 5. Shows screenshots of some tracking results.

Caviar2, the WMIL method loses the target when another per-
son occludes the target subject, and the CT also misses the
target when occlusion happens.

Scale and Illumination Change. For the Crossing se-
quence, when the light changes drastically, WMIL and IVT
fail to track the object reliably. The proposed method is
robust to scale and illumination changes as object appear-
ance can be modeled well by multiple feature fusion and the
representation model is used to separate the inliers and noise.

Abrupt motion and pose variation. The Shirt sequence
contains object with abrupt motion and pose variation. In the
sequence, our method is capable of tracking the target for the
entire sequence whereas other methods gradually drift away.
The reason that our method performs well can be explained
as follows. First, our tracker is able to reduce drifts with the
use of multiple features. Second, the proposed algorithm uses
representation model that account for large and drastic ap-
pearance change. In addition, our method employs ADMM
algorithm to solve the model.

In plane rotation and Background clutters. The target ob-
jects in the David2 sequence undergo in plane rotation and
background clutters. Our method performs well throughout
the sequence.

Scale change. The Ucsdpeds sequence contains signifi-
cant scale change. In the sequence, two people walk away
from the camera. The L1 method loses track of the target
from the start. All the other methods successfully track the
target but the MTT-L01, MTT-L02, L1-APG, and our method
achieve higher overlap scores.

4. CONCLUSION

In this paper, we have presented a robust multi-feature fusion
and multi-task joint sparse learning method for particle fil-
tering based tracking. By appropriately introducing the l1,2
norm regularization, the method not only exploits the under-
lying relationship shared by different features and differen-
t particles, but also captures the frequently emerging outlier
tasks. We implemented our method using four types of com-
plementary features, i.e. intensity, color histogram, HOG and
LBP. A feature selection criterion is employed to continually
evaluate and update the features used for tracking. The AD-
MM algorithm is used to solve the formulation. Kalman filter
based fusion scheme is used to fuse the features. The exper-
imental results demonstrate that the proposed method is ca-
pable of taking advantage of features and correctly handling
the outlier tasks. Compared to popular trackers, our tracker
demonstrates superior performance. Moreover, the proposed
method can potentially be extended to handle data obtained
from sensors other than cameras.
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