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ABSTRACT

In this paper, we cast tracking as a novel multi-task learning
problem and exploit various types of visual features. We use
an on-line feature selection mechanism based on the two-class
variance ratio measure, applied to log likelihood distributions
computed with respect to a given feature from samples of ob-
ject and background pixels. The proposed method is integrat-
ed in a particle filtering framework. We jointly consider the
underlying relationship across different particles, and tackle
it in a unified robust multi-task formulation. We show that
the proposed formulation can be efficiently solved using the
Alternating Direction Method of Multipliers (ADMM) with
a small number of closed-form updates. Both the qualitative
and quantitative results demonstrate the superior performance
of the proposed approach compared to several state of-the-art
trackers.

Index Terms— feature selection, multi-task learning, Al-
ternating Direction Method of Multipliers

1. INTRODUCTION

Visual object tracking is one of the critical problems in com-
puter vision. Various types of visual features including in-
tensity [1-4], Haar feature [5, 6], color [7], texture [8] and
superpixel [9] have been proposed.

A key issue addressed in our work is on-line, adaptive
feature selection for tracking. Our insight is that the feature
space that best distinguishes between foreground and back-
ground is the best feature space to be used for tracking. Mean-
while this choice of feature space will need to be continuous-
ly re-evaluated over time to adapt to changing appearances of
the tracked object and scene background. Kalman filter algo-
rithms are generally used to model object motion states in a
visual tracking. It is employed to assign feature confidences,
which ensures that the evolution of feature confidence is tem-
porally consistency by exploiting the feature discriminative
abilities in the current frame and feature confidences in the
previous frames.

This work was jointly supported by the National Natural Science Foun-
dation of China (No. 61374161) and China Aviation Science Foundation
(No. 20142057006).
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To overcome the problems mentioned above, we propose
to employ other visual features such as color, edge, and tex-
ture to complement intensity in the appearance representation
with a robust multi-task learning to solve the visual tracking
problem. The workflow is shown in Fig.1. Within the pro-
posed framework, the sparse representation for each feature
is learned as a linear combination of atoms from an adap-
tive feature dictionary, i.e. each feature has its own sparse
representation, which enables the tracker to capture different
statistics carried by different features. To exploit the inter-
dependencies shared between different particles, we impose
the 11,2-norm group-sparsity on the representation matrix to
learn the sparse representation jointly in a multi-task manner.
To handle the outlier particles from particle sampling, we de-
compose the sparse representation into two collaborative part-
s, thereby enabling them to learn representative coefficients
and detect outlier tasks simultaneously. An efficient Alternat-
ing Direction Method of Multipliers (ADMM) [10] scheme
is employed to obtain the optimal solution via a sequence of
closed-form updates.

Our contribution is three-fold: 1) we utilize multiple type-
s of features in a sparse representation-based framework for
tracking. Compared to previous related tracker, the new track-
er is not only able to take advantage of the robustness to oc-
clusion from sparse representation, but also introduces com-
plementary multiple-feature representation for robust appear-
ance modeling; 2) we treat every feature in each particle as an
individual task and jointly consider the underlying relation-
ship shared among different features and different particles
in a multi-task learning framework; 3) to capture the outlier
tasks that frequently emerge in the particle sampling process,
we employ a robust multitask scheme by decomposing the
coefficient matrix into two collaborative components.

2. OVERVIEW OF THE PROPOSED APPROACH

In our approach, four kinds of features are firstly extracted
frame by frame. Then the feature evaluation is carried out
to calculate the feature weight. Next, the particle filtering
tracking method is employed for each feature. Finally, the
tracking is completed by feature fusion.
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Fig. 1. The proposed tracking algorithm.

2.1. Feature Extraction

To take the advantage of complementary features, we em-
ployed four popular features: color histograms, intensity, his-
tograms of oriented gradients (HOG) [11] and local binary
patterns (LBP) [12]. HOG is a gradient-based feature that
captures edge distribution of an object. LBP is powerful for
representing object texture.

2.2. Object and Background Definition

We use a center-surround approach to sampling pixels from
the object and the background. That is, a compact set of pixels
(e.g. rectangle or ellipse) covering the object is chosen to
represent the object pixels, while a larger surrounding ring of
pixels is chosen to represent the background.

2.3. Discriminative Ability Calculation

We measure the discriminative ability [13, 14] of each feature
in current frame by computing the likelihood ratio between
the object feature and its corresponding background feature
as follows:

max(Fti(Iv y)7 6)

Ri = in(l,log———————— =1,- N
Rt mCLI(O,mZTL( ) Ogmafv(BZ(:v,y)ﬁ)))’Z ) ’
ey
R
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Where Fi(x,y) and Bi(x,y) are the ith features of the
object and the background at frame ¢ respectively. ¢ is set as
0.005 empirically.

2.4. Object Tracking

We carry out the object tracking in particle filtering frame-
work. The particle filtering can be divided into the prediction
and the update steps:
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where ss1.; = {81, 852, ..., $5¢ } denotes the state vectors up
to time tand y1.; = {y1, y2, ..., Y+ | are observations variables.
p(ss¢|ss¢—1) is a dynamic model that describes the state tran-
sition, and p(y:|ss;) is an observation model for each state.
For each state ss;. Thus, the optimal object state at time ¢ can
be determined by solving the maximum a posterior (MAP)
problem.

Kalman filter affords a solution to the feature evaluation
during a tracking process. In common sense, features of high-
er discriminative ability have larger confidences and vice ver-
sa. Therefore, we define the state of the Kalman filter for
feature evaluation as the combination of the confidence R;
and its variation “velocity” dR; of each feature. The mea-
surement of the filter is the discriminative ability vector at
frame ¢. Then the weight of the feature can be determined
by the prediction equation and the measurement equation of
a Kalman filter [14].

Y = 1y1 + aoy2 + a3ys + Qs )

where «;,7 = 1,2, 3,4 is the normalized Kalman filter pre-
diction.

2.5. Two-norm based Representation and Decomposition

In our tracking model, the particles are represented by a linear
combination of templates in dictionary D, i.e.,

Xi = DWW, + E; (6)

where W, is a coefficient matrix, Wy = [wy, wa, - - -
[d1,da,--- ,d(Nr)]s, N7 is the number of template. In (6),
the D, is decomposed into two part, row sparsity for capturing
the shared features among all particles and column sparsity
to identify the outlier noise simultaneously. Thus, the particle
representation in our tracker becomes the following form:

Xt = DtWt + Et = Dt(Lt + St) + Et (7)

Decomposing matrix W, into two separate sparse matrix-
es (i.e., Ly and S;) brings high robustness for the proposed
tracker. More specifically, we formulate our tracking model
as a group sparsity learning scheme:

ming, s, | Xe — Di(Le +Si) — By |7 4+A1 || L |2
A2 || St llzn +As || Bt [[1,1,We = Le + S (8)

where L; is the row group sparsity component, .S; is the col-
umn group sparsity component and E} is the noise. The three

7wn]taDt =
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where prox,; denotes proximal method for ||*||,, [16].
Solve the convex optimization problem with updated E*+1:

o1 2
Ek+1 = minimize > ||(X, — DkLk+t — pkgk+1) — Ek”,- + /13||Ek||1,1

s.t. EX = zk,

The scaled form of ADMM consists of the following iteration.

-1

Bt = (D) DI+ pI)  [X, — DFLF*t — DESEH 4 p(2E —ub)],
ZEYY = prox,, (ZE),

ukt = w4+ BRI - ZEH,
where prox;; denotes proximal method for [[*[|3;.

k = k+1;
end while

Output: solution L, = L¥*1, S, = SK*1 W, = L, + S,, to equation (8).

Fig. 2. The proposed tracking algorithm.

parameters Aj, Ao and A3 balance reliable construction and
joint sparsity, where \; regulates the row group sparsity on
Ly, Mg controls the column group sparsity on S; and A3 is a
regularization parameter which encourages the error matrix to
be sparse.

2.6. Resolve Equation (8)

Equation (8) represents the key idea of our method. Resolv-
ing equation (8) is essential to efficiently compute matrix ;.
While there are several optimization algorithms, we choose
the ADMM algorithm for its simplicity and efficiency. We
summarize our group sparsity algorithm implemented by AD-
MM for resolving equation (8) in Fig.2. More detail can be
found in [10, 15].

2.7. Template Update

To handle appearance variations, the target dictionary D; is
progressively updated similar to [1], and the templates are
weighted in the course of tracking.
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Algorithm: group sparsity algorithm implemented by ADMM. cr T LI-APG | L1 L2-RLS ML MTT-L01 [ MTT-L11 | WMIL Ours,

Input: X, D Caviar 685046 | 856776 | 24.8208 | 190745 | 144.9574 | 69.7605 | 652356 | 103.1512 | 886514 | 4.8362
Initialize L, S, (here L and S represent L, and S, respectively; t is omitted for clarity of the Caviarl 168755 | 333381 | 48.4095 | 106.8751 | 13008 87.2633 | 534084 | 101.8416 | 29.531 36022
algorithm description in the following.) Caviar2 63.167 133922 | 58703 | 246669 | 163851 | 226452 | 48235 104497 | 620663 | 6.0703
k=1, cup 43.6092 | 1.6257 24008 | 29189 2.6194 409867 | 64.6413 | 159.8587 | 101017 | 3.1348
While stopping criterion is not met do Davidindoor | 165161 | 67.5226 | 312135 | 86.6966 | 20.8459 | 231548 | 883262 | 195485 | 23577 14.4856
Solve the convex optimization problem: Dog1 157522 | 455823 | 97048 | 527659 | 46743 168385 | 82277 9.7217 29.521 0.5283
ot ! ok . 2 . Faceoce 155312 | 649672 | 248161 | 407633 | 207714 | 329755 | 333148 | 1647155 | 49.0825 | 17.4954
L+t = minjmizes [|(X; — D*S* — ) — D*L*||, + & |1zE]], ravocs | aswss | warrsa | tzaies | anssan | sisonr | avesss | sasor | swenss | sosies | e

s.t. L = ZF, Human 34695 | 359.7149 | 1921 125.4265 | 393.4827 | 5.8683 52527 | 922673 | 163524 | 5.4127

Perform the iterations of scaled ADMM algorithm: Jump 2160381 | 234.5108 | 172217 | 239.6197 | 234287 | 219.8929 | 62736 1213118 | 16553 9.3426

LK1 = ((DF)TDK + pD) 7 (DO (X, — D¥S¥) + p(zF — uf)], Shirt 122285 | 1116935 | 217862 | 455775 | 87.4274 | 224791 | 723955 | 205.4118 | 26456 | 7.473

ZI*1 = prox;,(2F), shop 705524 | 7.8512 29598 | 39316 | 610245 | 153831 | 2.4224 23.0001 | 628289 | 6.8675

el = gk 4 R Zken Ucsdpeds 5.3104 104702 | 17455 | 437165 | 62.797 109856 | 12032 | 46251 12555 | 52814

where prox,, denotes proximal method for |[l1, [16]. Crossing 7.3319 784715 | 22177 | 2.7864 5.8021 32711 | 425012 | 108.3541 | 2.8952

David2 805788 | 48.9736 | 2.6076 | 58.8368 143728 | 14139 2.9057 1106 | 44797

Solve the convex optimization problem with updated L<*1: Freeman1 141436 | 746266 | 84877 | 571923 | 146514 | 147425 | 1217953 | 1113064 | 22.5456 | 14.106

1 ) Head_motion | 152259 | 27.0431 | 9.437 8.6842 82647 | 9.8749 82459 | 9.4153 | 89.1344 | s.7958

Sk = minimize 5 [| (X, — DRU — E) — DRSH|| 4+ 2,]|2E], i07aacs | 229005 | #siats | a75305 | se0o;2 | serse | 1zeases | 10asisa | seaisr | 73243

s.t. sk =27k, Mhyang 315107 | 515048 | 36666 | 354632 | 97712 | s3ess2 | 44252 192103 | 433887 | 6.0334
Perform the iterations of scaled ADMM algorithm: Motocross2 | 102428 | 42.9039 | 317723 | sa.deas | 358466 | 214 639674 | 13.4824 | 651716 | 111312

SKHL = ((DKYTDF + pI) "L [(DFYT (X, — DFLFY) + p(ZE — uk)], Wpolarbear | 13.4378 | 219712 | s.4285 | 302203 | 127469 | 118766 | 12.092 196445 | 320759 | 7.0886

25V = proxy, (25), Xrocky 1703048 | 1600649 | 5.4003 | 97.6778 | 9.8632 1688514 | 825207 | 2040034 | 1155571 | 9.4632

Fig. 3. The average tracking errors. The error is measured
using the Euclidian distance of two center points from the
ground truth. The last row is the average error for each tracker
over all the test sequences.

3. EXPERIMENT

Performance of the proposed tracker is analyzed on 22 chal-
lenging video sequences and compared with seven state-
of-the-art tracking works including the Incremental Visual
Tracking IVT) [22], L1 tracking (L1T) [1], L1-APG tracking
[2], multi-task tracking (MTT-LO1, MTT-L21) [3], Multiple
Instance Learning tracking (MIL) [5], compressive tracking
(CT) [6], Wacv12 [17], WMIL [21], LSST [19], L2-RLS
[18]. The sequences include either a nonrigid object or an
object that undergoes significant appearance changes. The
tracker was implemented in Matlab and runs at approximate-
ly 1 frame per second on an Intel Core i5. The trackers are
run 3 times and the average results are reported for each video
clip. We would like to emphasize that all the parameters were
kept constant for all experiments.

3.1. Quantitative Comparison

We evaluate the above-mentioned algorithms using the cen-
ter location error as well as the overlapping rate [20], and the
results are shown in Fig.3 and Fig.4. Overall, the proposed
tracking algorithm achieves the best or second best results in
most sequences in terms of both success rate and center loca-
tion error.

3.2. Qualitative Comparison

Scale Change and Occlusion: Caviar2 and Shop contain sig-
nificant occlusion and scale change. Our method tracks the
target person well until the end of these sequences. In the



cr wr LLAPG | L1 L2RLS ML MITL01 | MTTLL | wmiL ours

Caviar 0158 0.146 022 0.424 0.024 0162 0156 015 0138 0.988

Caviarl 03827 03089 03037 0301 1 0.0079 03037 02084 0.0288 0.9843

Caviar2 027 0302 0914 04 0342 0.036 0982 0.424 0012 0.936

cup 0.4587 1 0.9967 1 1 0.4455 04752 01617 07294 1

Davidindoor 02359 02273 0.2078 02121 02273 0.0606 02857 03701 02143 0.6364

Dogl 06022 0223 0.9993 05659 0.9993 05778 08652 07333 02222 07926

faceocc 05011 0.0609 02167 0.1907 0.3309 0.0011 00158 01151 0.0011 055

Faceocc: 2 05767 03877 0.4147 0.4422 0.7067 0.5607 09607 08613 05546 07914

Human 05049 0.0243 0.9078 0.3058 0.0218 0.4029 09976 02451 0267 0.9345

Jump 01842 0.0219 03509 0.1096 0136 01272 07588 03158 0307 0.8377

shirt 07939 0.0126 0.6036 03396 0.0053 07056 00053 0.0053 02818 0.9853

Shop 03393 0.4036 0.768 0.9768 0.3643 03383 09929 03625 00125 0.8411

Uesdpeds 05504 0.0383 1 0341 0.023 00575 08352 0.4751 0.0038 0.6858

Crossing 085 0.025 0.8583 0.9583 0.2417 08167 1 0.424 0.0083 0.9583

David2 0.0019 0.0857 0.8361 0.257 0.9646 0.0037 1 01617 03259 0.311

Freeman1 0.6055 00123 07393 0.1687 03129 00706 01442 03613 0.0828 0.6319

Head_motion 09489 06711 07545 0.9838 0.9728 1 0983 02451 0.0694 0.997

Jogging 02248 0.2345 0.2248 0.0065 0.0423 0.2085 02248 03158 0.1889 0.8502

Mhyang 0.002 0294 09913 05745 07517 0.002 1 0.0493 0 0.9456

Motocross-2 08696 03043 05217 0.2609 03913 0.6087 0.5652 0.0053 0.0435 1

Wpolarbear 06173 02588 07305 0.4286 0.6092 0.7008 06846 05445 0.1078 0.8464

Xrocky 00533 0.1036 05 0.0414 0.7456 0.0562 05207 0.1183 0.003 0.6479

Fig. 4. Average overlap rate. The best three results are shown
in red, blue, and green fonts.

VT —MIL — LT L1-APG — MTT-LO1 WMIL L2-RLS -
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Fig. 5. Shows screenshots of some tracking results.
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Caviar2, the WMIL method loses the target when another per-
son occludes the target subject, and the CT also misses the
target when occlusion happens.

Scale and Illumination Change. For the Crossing se-
quence, when the light changes drastically, WMIL and IVT
fail to track the object reliably. The proposed method is
robust to scale and illumination changes as object appear-
ance can be modeled well by multiple feature fusion and the
representation model is used to separate the inliers and noise.

Abrupt motion and pose variation. The Shirt sequence
contains object with abrupt motion and pose variation. In the
sequence, our method is capable of tracking the target for the
entire sequence whereas other methods gradually drift away.
The reason that our method performs well can be explained
as follows. First, our tracker is able to reduce drifts with the
use of multiple features. Second, the proposed algorithm uses
representation model that account for large and drastic ap-
pearance change. In addition, our method employs ADMM
algorithm to solve the model.

In plane rotation and Background clutters. The target ob-
jects in the David2 sequence undergo in plane rotation and
background clutters. Our method performs well throughout
the sequence.

Scale change. The Ucsdpeds sequence contains signifi-
cant scale change. In the sequence, two people walk away
from the camera. The L1 method loses track of the target
from the start. All the other methods successfully track the
target but the MTT-LO1, MTT-L02, L1-APG, and our method
achieve higher overlap scores.

4. CONCLUSION

In this paper, we have presented a robust multi-feature fusion
and multi-task joint sparse learning method for particle fil-
tering based tracking. By appropriately introducing the [y o
norm regularization, the method not only exploits the under-
lying relationship shared by different features and differen-
t particles, but also captures the frequently emerging outlier
tasks. We implemented our method using four types of com-
plementary features, i.e. intensity, color histogram, HOG and
LBP. A feature selection criterion is employed to continually
evaluate and update the features used for tracking. The AD-
MM algorithm is used to solve the formulation. Kalman filter
based fusion scheme is used to fuse the features. The exper-
imental results demonstrate that the proposed method is ca-
pable of taking advantage of features and correctly handling
the outlier tasks. Compared to popular trackers, our tracker
demonstrates superior performance. Moreover, the proposed
method can potentially be extended to handle data obtained
from sensors other than cameras.



5. REFERENCES

[1] Mei, X., Ling, H., Robust visual tracking and vehicle
classification via sparse representation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(11), pp.
2259C2272, (2011)

[2] C. Bao, Y. Wu, H. Ling, and H. Ji, Real Time Robust L.1
Tracker Using Accelerated Proximal Gradient Approach,
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), Rhode Island, (2012)

[3] Zhang, T., Ghanem, B., Liu, S., Ahuja, N., Robust visu-
al tracking via multi-task sparse learning. In IEEE confer-

ence on computer vision and pattern recognition (pp. 1C8),
(2012)

[4] Zhang, T., Ghanem, B., Liu, S., Ahuja, N, Low-rank s-
parse learning for robust visual tracking. In Computer Vi-
sionCECCV (pp. 470-484). Springer Berlin Heidelberg,
(2012)

[5] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie,
Robust Object Tracking with Online Multiple Instance
Learning. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 33(8), 1619-1632, (2011)

[6] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang, Real-
Time Compressive Tracking. Proceedings of European
Conference on Computer Vision, vol. 3, pp. 864-877, Flo-
rence, Italy, October, (2012)

[7] M. Isard and A. Blake, Condensation conditional density
propagation for visual tracking. IJCV, 29(1):5C28, (1998)

[8] Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-
Learning-Detection, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 34(7): 1409-1422, (2011)

[9] S. Wang, H. Lu, F. Yang, and M.-H. Yang, Superpixel
tracking, in Proc. IEEE Int. Conf. Comput. Vision, Nov.
2011, pp. 1323C1330.

[10] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein,
J, Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1C122, (2011)

[11] N.Dalal, B. Triggs, Histograms of oriented gradients for
human detection, in: Proceedings of IEEE Conference on
CVPR, 2005, pp. 1063C6919.

[12] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolu-
tion gray-scale and rotation invariant texture classification
with local binary patterns. TPAMI, 24(7):971C987, 2002.

[13] R. T. Collins, Y. Liu, and M. Leordeanu. Online
selection of discriminative tracking features. TPAMI,
27(10):1631C1643, 2005.

1525

[14] Zhenjun Han, Qixiang Ye, Jianbin Jiao, Combined fea-
ture evaluation for adaptive visual object tracking, Com-
puter Vision and Image Understanding, Volume 115, Issue
1, January 2011, Pages 69-80

[15] Yong Wang, Shigiang Hu, and Shandong Wu, ”Visual
tracking based on group sparsity learning,” Machine Vi-
sion and Applications, pp: 1-13, 2014.

[16] X. Chen, W. Pan, J. Kwok, and J. Carbonell, Acceler-
ated gradient method for multi-task sparse learning prob-
lem. In IEEE international conference on data mining (pp.
746C751), (2009)

[17] Qing Wang, Feng Chen, Wenli Xu, Ming-Hsuan Yang.
Online Discriminative Object Tracking with Local Sparse
Representation. IEEE Workshop on the Applications of
Computer Vision, 425-432, 2012.

[18] Ziyang Xiao, Huchuan Lu, Dong Wang: L.2-RLS-Based
Object Tracking. IEEE Trans. Circuits Syst. Video Techn.
24(8): 1301-1309 (2014)

[19] Dong Wang, Huchuan Lu, Ming-Hsuan Yang: Least
Soft-Threshold Squares Tracking. CVPR 2013: 2371-
2378

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Win-
n, and A. Zisserman, The PASCAL Visual Object Classes
Challenge 2010 (VOC2010) Results, (2010)

[21] Zhang K, Song H. Real-time visual tracking via online
weighted multiple instance learning [J]. Pattern Recogni-
tion, 2013, 46(1): 397-411.

[22] Ross, D., Lim, J., Lin, R.S., Yang, M.H., Incremental
learning for robust visual tracking. International Journal of
Computer Vision, 77(1), 125C141, (2008)



