
VISUAL TRACKING VIA MULTI-TASK NON-NEGATIVE MATRIX FACTORIZATION

Yong Wang*, Xinbin Luo†, Shiqiang Hu†

*Hisilicon Technologies
†School of Aeronautics and Astronautics, Shanghai Jiao Tong University

ABSTRACT

We propose an online tracking algorithm in which the ob-
ject tracking is achieved by using subspace learning and
non-negative matrix factorization (NMF) under the parti-
cle filtering framework. The object appearance is modeled
by a non-negative combination of non-negative components
learned from examples observed in previous frames. In order
to robust tracking an object, group sparsity constraints are
included to the non-negativity one. In addition, the Alternat-
ing Direction Method of Multipliers (ADMM) algorithm is
proposed for efficient model updating. Qualitative and quan-
titative experiments on a variety of challenging sequences
show favorable performance of the proposed algorithm a-
gainst 9 state-of-the-art methods.

Index Terms— non-negative matrix factorization, Alter-
nating direction method of multipliers, subspace learning

1. INTRODUCTION

Object tracking plays a crucial role in numerous vision ap-
plications including human computer interaction, human ac-
tivity analysis, traffic flow video processing, to name a few
[1-10]. Tracking algorithms can be categorized as either gen-
erative [2-8] or discriminative [9-11] approaches. Generative
tracking algorithms usually construct appearance models with
image observations in offline or online settings. The tracking
problem is formulated as searching for the region with the
highest probability of being generated from the appearance
model.

In this paper, a novel target representation is proposed
based on the non-negative matrix factorization (NMF) [12].
Linear combinations of a set of non-negative basis are em-
ployed to model object appearance. The non-negative basis
will efficiently capture the structure information of the target.
In order to encode the characteristics in the tracking process,
group sparsity is introduced. As shown in our experiments,
our method is robust to illumination variation, pose change,
background clutter and sever occlusion.
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(No. 20142057006).

 

Fig. 1. The proposed tracking algorithm.

To apply our constrained NMF for visual tracking, we
propose a tracking framework to capture the appearance prop-
erty of the target. The workflow is shown in Fig.1. Our track-
ing algorithm is combined with the particle filtering and sub-
space learning framework. Specifically, given a new sample y
in a new frame, the algorithm iteratively and alternatively up-
dates basis matrix W and the approximation of y with respect
to W. the likelihood of each particle is derived from its recon-
struction error using the learned basis W. and the maximum
of the likelihood is chosen to the target.

Compared with existing approaches, the contributions of
this work are three fold. First, we represent the tracked object
using PCA bases, taking advantages of the strengths of sub-
space representation. Second, we propose to use group sparsi-
ty NMF for visual tracking. To the best of our knowledge, this
is the first time group sparsity NMF has been used for object
tracking. The model that takes the inliers and noise into con-
sideration is robust under different tracking scenarios. Third,
we develop a novel algorithm based on Alternating direction
method of multipliers (ADMM) method. In the experiments,
the proposed tracking algorithm demonstrated superior per-
formances in comparison with 9 stat-of-the-art methods.

2. NMF GROUP SPARSITY-BASED TRACKING

In this section, we first briefly introduce particle filtering
framework that our tracker is formulated within. And then
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the subspace learning procedure is presented. Next we give a
detailed description of both the principle and algorithm steps
of our tracking model, followed by the implementation of the
model using the ADMM algorithm.

2.1. Particle Filtering Tracking

In the particle filtering framework, there exist two fundamen-
tal steps: prediction and update. Let sst denote the state vari-
able of the tracked object and yt denote its corresponding ob-
servation in the t-th frame. Then the posterior probability can
be recursively estimated by the following two rules:

p(sst|y1:t−1) =

∫
p(sst|sst−1)p(sst−1|y1:t−1)dsst−1 (1)

p(sst|y1:t) =
p(yt|sst)p(sst|y1:t−1)

p(yt|y1:t−1)
(2)

where ss1:t = {ss1, ss2, ..., sst} stand for all available
state vectors up to time t and y1:t = {y1, y2, ..., yt} denote
their corresponding observations. p(sst|sst−1) is a dynamic
model that describes the state transition, and p(yt|sst) is an
observation model that estimates the likelihood of observing
yt at state sst. The posterior p(sst|y1:t) is approximated by
K weighted particles.

2.2. Subspace Learning

At each instance t we model the tracking target and all candi-
dates with k PCA basis vectors (Wt) and an error term (Et)
as:

Xt = WtHt + Et (3)

where Xt ∈ Rd∗N , Xt = [x1, x2, · · · , xN ] is the observa-
tion vector, N is the number of observations, Wt ∈ Rd∗k

denotes a matrix of PCA basis vectors (d represents feature
dimension and k the number of PCA basis), Ht ∈ Rk∗N de-
notes the corresponding coding vectors (target coefficients),
and Et ∈ Rd∗N represents the error term. The most informa-
tive k orthogonal bases of the target subspace are composed
to the PCA basis vectors to model the tracking target. We use
the affine transformation to model the object motion between
two consecutive frames.

2.3. NMF Representation

Recently the L1∞ norm has been proposed for joint regular-
ization. Essentially, this type of regularization aims at learn-
ing a set of joint sparse models. The L1∞ norm is a matrix
norm that penalizes the sum of maximum absolute values of
each row. This regularizer encourages row sparsity: i.e., it
encourages entire rows of the matrix to have zero elements.
Therefore, we applied group sparsity penalty L1∞ to the row

Algorithm1: group sparsity NMF tracking algorithm 

Input: Current frame at .  

     Dictionary template . 

     All n particles . 

1. Generate  particles  within the particle filtering framework. 

2. Compute imaging feature for each of the  particles and then form subspace matrix. 

3. Obtain group sparse representation  and  by solving equation (4). 

4. Calculate reconstruction error , . 

5. Calculate  for each particle. 

6. Select the particle with the highest value of  as the current tracking result . 

Output: Tracked target . 

       Current state . 

 

Fig. 2. The proposed group sparsity NMF tracking algorithm.

groups of the Wt in equation (3) to capture the shared features
among all tasks over all particles. The L1 loss penalty func-
tion is employed to penalize the differences between template
and the noise. Thus, equation (3) can be re-written as the fol-
lowing form:

minWt,Ht,Et ∥ Xt −WtHt − Et ∥2F +λ1 ∥ Wt ∥1,∞
+λ2 ∥ Ht ∥1,1 +λ3 ∥ Et ∥1,1, s.t.Wt ≥ 0, Et ≥ 0. (4)

where λ1, λ2 and λ3 are tradeoff parameters controlling reli-
able construction of the observation, joint sparsity regulariza-
tion and noise.

The novel of our tracking method is based on the NMF
to implicitly combine holistic and part based methods. The
target appearances are modeled as non-negative linear combi-
nations of a set of non-negative basis that implicitly captures
structure information. The row group sparsity which reflect-
s the underlying assumption that target appearances across
frames lies in the same subspace. Therefore, our represen-
tation model inherits the merits of nonnegativity constraint
from NMF. In the following subsection we show that the solu-
tion to this problem can be obtained by performing a sequence
of closed form optimization steps by the ADMM method. The
detail of the ADMM algorithm can be found in [13] and [14].

2.4. Resolve Equation (4)

ADMM algorithm has been shown to be robust in machine
learning applications and advantageous in resolving optimiza-
tion problem of the sums of simple convex functions [7]. Re-
solving equation (4) in Algorithm 1 is essential to efficiently
compute matrix Bt and Wt alternatively. We summarize our
NMF group sparsity algorithm implemented by ADMM for
resolving equation (4) in Fig.3.

3. EXPERIMENT

Performance of the proposed tracker has analyzed on 25
challenging video sequences and compared with seven state-
of-the-art tracking works including the Incremental Visual
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Algorithm 2: group sparsity algorithm implemented by ADMM. 

Input: , , (  is omitted for clarity of the algorithm description in the following.) 

Initialize  

While stopping criterion is not met do 

 

 

 

 

 

 

 

 

 

 

end while 

Output: , . 

 

Fig. 3. Implementation of the proposed NMF group sparsity
learning algorithm using ADMM.

Tracking (IVT) [2], L1 tracking (L1T) [3], L1-APG track-
ing, multi-task tracking (MTT-L01, MTT-L21) [5], Multiple
Instance Learning tracking (MIL) [9], compressive tracking
(CT) [6], Wacv12 [10], WMIL [11], LSST [16], L2-RLS
[15]. The sequences include either a nonrigid object or an
object that undergoes significant appearance changes. The
tracker was implemented in Matlab and runs at approximate-
ly 2 frames per second on an Intel Core i5. The trackers are
run 3 times and the average results are reported for each video
clip. We would like to emphasize that all the parameters were
kept constant for all experiments.

3.1. Quantitative Comparison

The above-mentioned algorithms are evaluated using the cen-
ter location error as well as the overlapping rate [18]. The
average tracking errors are presented in Fig.4 where the best
and results are shown with bold red fonts, and the second
best ones are shown with blue fonts. The average overlap-
ping errors are presented in Fig.5 where the best and result-
s are shown with bold red fonts, and the second best ones
are shown with blue fonts. The proposed tracking algorithm
achieves the best or second best results in most sequences in
terms of both success rate and center location error. Overall,
the proposed tracker performs well against the other state-of-
the-art algorithms.

3.2. Qualitative Comparison

Large pose variations with occlusions. In the basketball se-
quence, the player undergoes large pose variation and heavy
occlusions. When the player is partially occluded by other
similar players, the IVT, MIL, L1 and L1-APG methods do

 CT IVT L1-APG L1 L2-RLS MIL MTT-L01 MTT-L02 WMIL Ours 

Basketball 16.3142 63.4504 63.3235 40.3348 33.4781 39.1368 44.8406 28.9425 14.47.7 8.211 

Car11 3.8078 2.0304 1.9286 33.3288 2.7366 7.6508 2.2616 4.1108 96.9464 2.657 

Caviar 68.5046 85.6776 24.8298 18.7307 144.9574 69.7605 65.2356 103.1512 88.6514 5.2573 

Caviar1 16.8755 33.3381 48.4095 4.4955 1.3008 87.2633 53.4084 101.8416 29.531 1.4928 

Caviar2 63.1670 13.3922 5.8703 3.4694 16.3851 22.6452 4.8253 10.4497 62.0663 3.0071 

Cup 43.6092 1.6257 2.4408 2.7351 2.6194 40.9867 64.6413 159.8587 10.1017 1.6286 

DavidIndoor 16.5161 67.5226 31.2135 221.8834 20.8459 23.1548 88.3262 19.5485 23.577 12.5193 

Faceocc2 24.5455 63.7754 12.4189 153.9712 11.5001 21.4552 8.1904 29.6458 30.9168 9.819 

Human 3.4695 359.7149 1.921 310.9163 393.4827 5.8683 3.2527 92.2673 16.3524 3.5852 

Juice 6.7165 69.1284 0.9835 110.9964 6.1545 42.3063 3.4975 4.3433 10.4687 1.3031 

Shirt 12.2288 111.6935 21.7862 299.1189 87.4274 22.4791 72.3955 205.4118 26.456 6.9631 

Singer 19.2334 47.1161 5.098 386.1092 27.0821 23.1601 51.9938 132.2349 18.0611 4.1445 

Ucsdpeds 5.3104 11.4702 1.7455 101.5581 62.797 10.9856 1.2932 4.6251 12.555 1.9478 

Davidoutdoor 17.0244 259.9404 88.5216 458.5109 251.2946 70.7758 68.5676 482.0626 106.9907 5.3921 

Fish 12.3659 33.1363 19.052 256.9916 38.1686 32.8666 39.8556 73.2485 52.5336 8.5455 

Head_motion 15.2259 27.0431 9.437 8.3989 8.2647 9.8749 8.2459 9.4153 89.1344 8.0022 

Mhyang 31.5107 51.5048 3.6666 251.1091 9.7712 53.9352 4.4252 19.2103 43.3887 3.7361 

Ucup_on_table 13.8521 18.3712 1.5787 1.9819 2.5663 14.5659 1.8291 3.2201 17.5912 1.721 

Uperson 10.4055 71.7153 68.6291 139.2425 2.8737 14.1563 12.9408 450.6377 90.8026 4.094 

Uperson_partially_occluded 4.2774 2.3043 2.6337 2.6405 2.8452 45.4719 2.4118 2.9807 50.8289 2.5028 

Chasing 12.8025 38.6676 4.9867 16.4593 5.8737 27.0968 6.7806 10.0162 9.3662 5.6147 

Wball 7.0224 54.723 67.4685 154.9613 25.8186 23.4256 64.6334 38.8347 14.6955 6.9762 

Wsurfing 10.6356 76.054 1.5356 1.7362 2.0272 5.5925 1.3556 4.5537 14.5308 4.0732 

Xped1 51.3988 66.844 59.738 364.7516 10.3577 12.0172 64.2581 294.7471 45.1044 9.0738 

Ycampus 32.3187 51.2778 2.8255 91.7948 7.2465 18.8763 24.3624 93.2914 56.1295 1.7744 

 

Fig. 4. The average tracking errors. The error is measured
using the Euclidian distance of two center points from the
ground truth. The last row is the average error for each tracker
over all the test sequences.

 CT IVT L1-APG L1 L2-RLS MIL MTT-L01 MTT-L02 WMIL Ours 

Basketball 0.2634 0.0152 0.2662 0.0083 0.0938 0.2579 0.2497 0.0276 0.5234 0.5917 

Car11 0.7201 0.6768 0.9211 0.5623 0.8295 0.3919 0.9135 0.7684 0.0025 0.8804 

Caviar 0.158 0.146 0.22 0.452 0.024 0.162 0.156 0.15 0.138 0.994 

Caviar1 0.3927 0.3089 0.3037 0.9215 1 0.0079 0.3037 0.2984 0.0288 1 

Caviar2 0.27 0.302 0.914 0.992 0.342 0.036 0.982 0.424 0.012 0.994 

Cup 0.4587 1 0.9967 1 1 0.4455 0.4752 0.1617 0.7294 1 

DavidIndoor 0.2359 0.2273 0.2087 0.1991 0.2273 0.0606 0.2857 0.3701 0.2143 0.671 

Faceocc2 0.5767 0.3877 0.4147 0.4515 0.7067 0.5607 0.9607 0.8613 0.5546 0.8859 

Human 0.5049 0.0243 0.9078 0.2451 0.00218 0.4029 0.9976 0.2451 0.267 0.9927 

Juice 0.4703 0.349 1 0.5 0.8861 0.0074 1 0.9926 0.4579 1 

Shirt 0.7939 0.0126 0.6036 0.0063 0.0053 0.7056 0.0053 0.0053 0.2818 0.9832 

Singer 0.2906 0.3447 0.4359 0.2393 0.0256 0.2222 0.3476 0.2821 0.2593 1 

Ucsdpeds 0.5594 0.0383 1 0.0536 0.023 0.0575 0.8352 0.4751 0.0038 0.9962 

Davidoutdoor 0.881 0.0198 0.3611 0.0159 0.0159 0.3968 0.3968 0.0397 0.3254 0.996 

Fish 0.9139 0.2164 0.0735 0.0483 0.0651 0.1639 0.042 0.271 0.0357 0.5903 

Head_motion 0.9489 0.6711 0.7545 0.9851 0.9728 1 0.983 0.9919 0.0694 1 

Mhyang 0.002 0.294 0.9913 0.2416 0.7517 0.002 1 0.8483 0 0.9664 

Ucup_on_table 0.1216 0.1863 1 1 1 0.1392 1 0.998 0 1 

Uperson 0.7434 0.1837 0.4952 0.5111 0.9894 0.453 0.6315 0.0876 0.5322 0.9916 

Uperson_partially_occluded 0.9082 0.9508 0.9934 0.9705 0.9377 0.0033 0.9541 0.9541 0.0033 0.9508 

Chasing 0.1783 0.0667 0.64 0.7383 0.6717 0.005 0.705 0.6483 0.74 0.8283 

Wball 0.799 0.0449 0.1196 0.2193 0.3206 0.0166 0.1096 0.1296 0.5249 0.799 

Wsurfing 0.9326 0.0426 1 0.9965 0.9965 0.9397 1 0.578 0.3972 1 

Xped1 0.5897 0.4316 0.2692 0.0085 0.5897 0.9615 0.5385 0.0983 0.2521 0.9615 

Ycampus 0.6374 0.1374 1 0.1758 1 0.533 0.2747 0.1319 0.2747 1 

 

Fig. 5. Average overlap rate. The best three results are shown
in red, blue, and green fonts.
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Fig. 6. Shows screenshots of some tracking results.

not perform well. Although, the WMIL track the object cen-
ter location well, it cannot estimate the size of the objects.
Our algorithm tracks the target objects reliably through the
sequence.

Occlusions. The target in Caviar sequence undergoes
heavy occlusions. In addition, the scale of the object in the
caviar sequence changes significantly. The L2-RLS, MIL and
MTT methods do not perform well when large scale change
occurs. Due to significant scale changes in the caviar se-
quence, the CT shows limited tracking performance. When
heavy occlusions occur, the WMIL and IVT methods start
to drift away from the target object. On the other hand, our
algorithm tracks the target objects well.

Illumination and pose variations: The objects in Singer
and DavidIndoor sequences undergo large appearance changes
due to illumination and pose variations. In the Singer se-
quence, the L1 methods do not perform well. The IVT, MIL,
and L2-RLS approaches do not track the object reliably when
illumination and pose variations occur together. In addition,
the MTT-L01 and MTT-L02 methods do not perform well
when scale and large illumination changes occur simultane-
ously. The WMIL does not deal with large scale changes
well. Different from other tracking methods, our algorithm
tracks the object favorably for various appearance changes.

Appearance changes: The target object in Shirt sequence
undergoes various appearance changes including motion
blurs, background clutter, and pose variations. When the
target undergoes motion blurs, the L1 and MTT-L02 meth-
ods do not perform well. When background clutter occurs,
the MTT-L01 and MIL methods drift away from the target
objects. On the other hand, the IVT and WMIL methods
fail to track the objects well when motion blurs occur. The
CT and L1-APG methods do not perform well when large
pose changes occur. In contrast, our algorithm performs
well which can be attributed to use subspace learning and
representation model to handle appearance changes.

Illumination and motion blur: The target objects under-
go drastic illumination changes and motion blurs in Fish se-
quence. Most of trackers do not perform well. While our
algorithm tracks the objects well due to the use of subspace
model to update the template.

4. CONCLUSION

In summary, based on the subspace learning and NMF group
sparsity constraint, we developed a robust tracking method
which improved tracking accuracy. The accuracy improve-
ment is achieved via a new object representation model for
finding the sparse representation of the target. And it is solved
by ADMM numerical solver. Numerous experimental result-
s and evaluations demonstrate the proposed tracker perform-
s favorably against existing state-of-the-art algorithms in the
literature.
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