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ABSTRACT

The work on 3D human pose estimation has been through
a significant amount of progress in recent years, particu-
larly due to the widespread availability of commodity depth
sensors. However, most pose estimation methods follow
a tracking-as-detection approach which does not explicitly
handle occlusions, thus introducing outliers and identity
association issues when multiple targets are involved. To
address these issues, we propose a new method based on
Probability Hypothesis Density (PHD) filter. In this method,
the PHD filter with a novel clutter intensity model is used
to remove outliers in the 3D head detection results, followed
by an identity association scheme with occlusion detection
for the targets. Experimental results show that our proposed
method greatly mitigates the outliers, and correctly associates
identities to individual detections with low computational
cost.

Index Terms— 3D tracking, PHD filter, identity associa-
tion, outlier detection

1. INTRODUCTION

Person tracking has been extensively studied in the field of
computer vision [2, 3, 4, 5, 6, 7, 8], with various applications
ranging from surveillance, video retrieval, teleconferencing to
human-computer interaction and games. Of particular interest
in multiple person tracking is when a person occludes another,
which causes naive algorithms to swap the identities of targets
or get multiple trackers to follow the same person.

Several approaches have been proposed for person re-
identification [9], most of them are appearance-based [10,
11]. The intended application in this paper is to track users in
home theaters for spatial audio applications [12]. In this sce-
nario, illumination tends to be quite poor, as dimmed lights
are commonly used or the only light source comes from the
TV. Therefore, appearance-based methods cannot be applied.

We are grateful for the help of Mark Barnard on building the dataset
used in this paper. We would like to acknowledge the support of the EPSRC
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978-1-4799-9988-0/16/$31.00 ©2016 IEEE

1506

A number of methods have been proposed to detect and
track people in depth images [13, 14], particularly those gen-
erated using sensors based on structured light projection, such
as the commercial system Kinect for Xbox 360. Kinect is de-
signed to work on living rooms, the range of distance where
it operates is optimal for our application, whereas other im-
plementations available off-the-shelf have been optimized to
be used on webcam scenarios, with a much smaller work-
ing distance range. To address the ID association problem for
Kinect sensors, the method in [15] combines face recognition,
clothing color tracking and height estimation exploiting both
RGB and depth streams. Yet, it still depends on the illumi-
nation condition. Barbosa et al. [16] extract skeleton-based
and surface-based features from the range data to re-identify
individuals. However, its computational cost is high.

In this paper, we use a second generation Kinect sensor
[17] (dubbed Kinect?2 in this paper), which is a time-of-flight
depth sensor. For spatial audio applications, only head posi-
tions are required. Kinect for Windows SDK 2.0 offers tools
to detect up to six people and estimate their poses based on a
skeleton model with 25 joints, from which the 3D head posi-
tions can be detected straightforwardly. However, this skele-
ton detector follows a tracking-as-detection strategy, which
does not filter out results and a number of outliers are gener-
ated. More crucially, identities of targets tend to get swapped
or re-assigned to new values when occlusions happen.

To address these issues, a Probability Hypothesis Density
(PHD) filter [18] is applied to 3D head detection results to re-
move outliers, followed by a proposed ID association scheme
to correct these swapped identities. A novel clutter intensity
model is used in the PHD filter, which is measurement-driven
and depends on the depth sensor’s Field Of View (FOV). Pro-
cessing of the 3D head detection results, rather than RGB im-
ages or depth maps, requires very little data bandwidth, en-
abling real-time implementation in a separate computer, not
interfering with the machine that detects skeletons.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the PHD filter with the proposed clutter in-
tensity model. Section 3 presents the ID association scheme
based on occlusion detection. Experimental results are shown
and analyzed in Section 4. Conclusions and insights for future
research directions are raised in Section 5.
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2. PHD FILTER WITH DOMAIN-SPECIFIC
CLUTTER FUNCTION

We propose a modification of the Probability Hypothesis
Density (PHD) filter [18] to take clutter potential into ac-
count. Here, clutter is used to denominate failure cases such
as outlying position detections and detection failure.

The PHD filter was introduced by Mabhler, which ad-
dresses the problem of computational intractability of Bayes
filters. Suppose the measurement set at the k-th frame con-
tains my, observations Zy = {z1, ..., %, }, and we aim to
find the hidden multi-target state X from the accumulated
measurement sets up to time k. For our specific applica-
tion, the measurement set Z contains the 3D head positions
z = [z,y,2]" from Kinect2 skeletal tracking. We aim to find
the 3D head position as well as the velocity for each target
X = [z,9,2, 4,7, %] |, while filtering out clutters.

The Sequential Monte Carlo (SMC) implementation of
the PHD filter as proposed in [19] is used in this paper. There
is a parameter x(z), i.e. the PHD of clutter or clutter intensity,
which plays an important role in SMC-PHD. Instead of uni-
form distribution as used in [19, 20], we propose a novel clut-
ter intensity model x(z|Z), which is based on occlusion de-
tection from the measurement Z as well depth sensor’s range
and FOV constraints:

k(2|Z) = k + k1(2) + Kka(z, 2) + k3(2|Z). (D

In the above equation, « is the clutter intensity for visible tar-
gets in the light shaded area in Fig. 1. x; and ko are the
clutter intensity increments for measurements that are out of
the sensor’s range and FOV respectively. The FOV in the hor-
izontal plane, i.e. the x-z plane is considered. x5 is the clutter
intensity increment caused by occlusions. Occlusions are il-
lustrated in Fig. 1, where an object close to the depth sensor
might occlude an object behind it. When the overall clutter
intensity is large, the weights of all particles that represent
the targets (newborn or not) decreases. When it is small, the
weights of newborn target near any new measurement dramat-
ically increases. Details about the parametrization of x(z|Z)
are given in Section 4.2.

3. IDENTITY ASSOCIATION

After applying the PHD filter at each time instance, the esti-
mated state is less noisy, but person identification problems
can persist. We propose to re-assign identities in two steps:
short- and long-term analysis. To facilitate the analysis, a
lookup table IDstatus is created in the format below, which
tracks the status of existing IDs for up to e.g. Ss:

[idy, timey, posi= (pPOS; 4, POS1,y, POS1,2)]
[id2, times, (POS2, ., POS2,, POS2,-)]

[idy, timey, (POSN 2, POSN,y, POSN )]

z (m)
45

FOV

f

f
f
f

1.2
ik £
35.3°

x (m)

Fig. 1: The Kinect2 person detector’s range goes from 1.2m
and 4.5m of distance and its FOV is of 70.6° in the horizontal
plane. A target at position z; with radius § occludes the area
illustrated by the shadow confined by the two dashed lines.
A target at zo is likely to be occluded and results in a high
clutter intensity x3(z2|Z).

where id last appears at time at the position pos.

The short-term analysis aims to keep the consistency
within a small time interval (e.g. 0.2s). The distance between
the target state x and the states from the lookup table whose
last appearance time is within the short-term threshold is cal-
culated. If the minimum distance to sample j is smaller than
a threshold (distance upper bound), and the distances to other
samples are larger by more than a distance difference lower
bound, then x can be assigned to the id;. The associated time
in the lookup table will be updated with time; = 0.

After this step, if there is still any target x without any as-
signed ID, two assumptions are imposed to address this prob-
lem. First, it might have appeared before, and its ID is saved
in the lookup table IDstatus. However, none of the existing
IDs are in the near neighborhood of the target since it might
have been occluded for a while. Second, it might be a new-
born target with a new ID.

Thus the long-term analysis is performed considering oc-
clusions. The analysis for this step is done on the horizon-
tal (x-z) plane. All the existing IDs with subject to time; #
0,7 = 1,---, N might be the current target x that got oc-
cluded for time; frames. Assuming the occluded target walks
through a straight line between pos; and x, we can evenly
divide the line into several segments, with each one lasting
about one second. The center of the ¢-th segment is denoted
as Pji = (Pji,2s Pj,i,y» Pji,2)- If all of these segments are de-
tected as occluded, then x is likely to be originated from id;.
Otherwise, a new random ID will be assigned to the target. If
more than one existing IDs are likely to originate x, then the
nearest ID will be assigned to it.

For the particular segment center p; ;, occlusion detection
is performed by searching for any detected targets in the i-th
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time segment, whose occluded area covers the segment cen-
ter position p; ;. Therefore, the log of all detected targets at
the ¢-th time segment is analyzed. However, the calculation
of occluded area of each of these targets is time consuming
and there are more factors affecting the occlusion such as the
height and width of each target. A computationally efficient
approximation is proposed by first drawing the bearing line
between the origin and p; ;. The distance between the above
targets to this bearing line is then calculated. If any target
is closer to the origin and its distance to the bearing line is
smaller than a certain threshold, then p; ; is detected as oc-
cluded.

Note that the lookup table IDstatus is updated after ID
association is performed at each frame. New IDs with the
related positions and time = 1 will be added; for existing
IDs, their positions and last appearance time will be updated.

4. EXPERIMENTS

4.1. Data

Two sequences of data were recorded for our experiments.
The first sequence, which lasts about 2.5 minutes, was
recorded in a living room, with a setup scenario, as shown
in Fig. 2. Four people were involved in this session. Person
1 walks along the L-shaped blue line back and forth, while
Person 2 walks along the red line. Person 3 is a manikin who
stands still at the center of the room. Person 4 leaves the room
in the beginning of the sequence, and re-enters it at towards
end. Person 1, 2, 4 all walk asynchronously, at a pace of their
preference.

Sequence 2 lasts about 30 seconds. It was recorded in
an office space. Two people were involved in this session.
We intentionally designed a much more challenging scenario,
where these two subjects walk/run around each other freely,
often getting very close to each other. Moreover, one of the
subjects runs about and jumps from time to time to increase
challenges in person detection.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 396 em .
t T 1
! ‘
! ;
1 g Person 2
1 (&
i o
! e
‘
‘
=1
£l
O
=1l
D R S SN - C A O
il 70 cm Person 3
! =
! [}
3 R Person 1
1 T
! I
! I
4 L

Fig. 2: Recording setup of Sequence 1. Person 1 to 3 are in
the FOV all the time. Person 4 leaves and enters the FOV in
the beginning and end of the sequence.

4.2. Parameter setup

Using the same notation as in [19], the parameter setup for the
SMC-PHD filter is determined based on a validation subset of
Sequence 1. The survival and detection probability were set
to Ps = 0.98 and Pp = 0.9. Measurement-centered new-
born targets were drawn with a Gaussian distribution whose
Y equals to the identity matrix times 0.02. The birth intensity
v = 0.1 and the particle number per persistent or newborn tar-
getis M, = M; = 400. The measurement likelihood follows
g(z]x) = N (|12 — x]210,0.02).

For the proposed intensity in Eq. (1), K = 0.2. k1(2)
linearly increases from O to 2 when ||z||2 increases from 4.5m
to 5.5m or decreases from 1.2m to Om. ka(x, z) is set based
on the FOV angle: when |z| > tan(35.3°)|z|, ka(z, 2) = 1;
otherwise, it is 0. We set the radius of a target as § = 0.2,
as illustrated in Fig. 1. Assuming z; = [2;,;, ;] | is a target
detected in front of z = [z, v, 2] |, then its mapped radius d; at

Izl

. The occlusion-
[ENB

the position of z roughly equals' §; = &
based clutter function is then defined as

—d?
k3(z|Z) = Z 0.3 exp <2621) ,

z,€72,2;<z
where d; is the distance from z to z;’s bearing line.

In the first step of the ID association scheme, short-term
windows of 0.2s are used. The distance upper bound is 0.3m,
and the distance difference lower bound is 0.2m. In the sec-
ond step, the long-term log list contains a 5s buffer. Occlu-
sion detection is carried out at each segment lasting 1s, and
the distance threshold of 0.3m is used.

4.3. Results and analysis

The original noisy Kinect2 head detection results on Se-
quence 1 are shown in Fig. 3. Each color represents one
ID. Person 1’s ID is represented by the blue L-shaped curve.
Person 2 is represented by the tangled curve containing black,
yellow and cyan. Person 3 is around the center of the plots
and its label (color) changes a lot during this session. Person
4 is represented by the black and orange from the edge to
the center. A high number of outliers occur, especially in the
occluded region on the right side. The oscillations are head
movements resulting from walking motion. After applying
our proposed method, the tracking results show a significant
reduction in the number of outliers and corrected IDs are
obtained, as shown in Fig. 3 (b).

In Sequence 2, since the walking trajectories for both
participants are very complex, only the first 14 seconds are
shown to improve understanding. The full sequence is avail-
able from [1]. As shown in top left subplot in Fig. 4, a high
degree of occlusions occur within in this short period of time.

IThis is only an approximation. The accurate result requires the calcu-
lation of the intersection point from z to the bearing line. Since the depth
sensor is located at the origin of the coordinate system, ||z||2 and ||z;||2 are
the Euclidean distances from the targets to the sensor.
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(b) Processed

(a) Original

Fig. 3: Sequence 1 before (a) and after (b) applying the pro-
posed method. A large number of outliers is present in (a) and
the IDs of Person 2 and Person 3 change frequently, especially
due to occlusions. The proposed method has successfully ad-
dressed this problem.

The two participants have different height, which can be
seen in the vertical plane, i.e. the y-z plane as presented in
the 2D view. We notice that after processing the detection
results with our proposed method, most of the swapped or
inaccurate IDs have been rectified, and only two colors are
present, as shown in the bottom row of Fig. 4. Both detected
trajectories can be fitted into one plane associated with one
subject, as shown in the bottom left subplot. As expected,
the subject shown in cyan was jumping up and down and the
subject shown in dark blue kept the head at a roughly constant
height.

In order to present quantitative analysis of our results, we
created ground truth by manually labeling the IDs of each
person. Table 1 shows the number of times when the ID of
each target person has erroneously changed.

For Sequence 1, our proposed method successfully ad-
dressed the ID association problem of Person 2 and 3. Person
4 is still assigned with two IDs since the duration between its
absence and presence is too long (> 1 minute). Moreover,
most of the outliers were removed. In the original tracking
results of Sequence 1, 407 out of a total of 12455 detections
are outliers, i.e. mis-detected targets take 3.3% of the sam-
ples. After processing, only 24 out of 11243 detections are
outliers, i.e., 0.2%. However, this is done at the cost of miss-
ing a small number of correct detections. This is because the

Dataset Sequence 1 Sequence 2
Subjectindex | P1 | P2 | P3 | P4 | PI P2
Original 0 3 3 1 7 6
Processed 0 010 1 2 0

Table 1: Number of incorrect label changes.

0.5 4

-0.5 -

(b) Original, 2D view

0.5 4

(c) Processed, 3D view (d) Processed, 2D view

Fig. 4: Sequence 2 before (top) and after (bottom) applying
the proposed method for the first 14 seconds. Five IDs are as-
signed to the two participants in the original tracking results
and their IDs often get swapped. After processing, only two
IDs are associated to the two participants, and no swapping
happens, as can be observed from subplot (d) as the two tra-
jectories fit to two lines.

PHD filter needs several frames to converge to the target when
it disappears and comes back again.

For Sequence 2, Person 2 is assigned with a consistent ID.
However, Person 1’s ID still changes twice. One reason is that
Person 1 walks/runs very fast, with some free poses such as
waving and bending over, which adds difficulties to both the
head detection and ID association.

5. CONCLUSION

An efficient ID association method for multiple person track-
ing using depth sensors was proposed. The PHD filter with a
novel clutter intensity model is used to remove outliers, and
an ID association scheme with occlusion detection has been
integrated. Experimental results show that our method suc-
cessfully addresses the person re-identification problem with-
out requiring appearance measurements. Future work will
take into account long-term trajectory estimation, and indi-
vidual attributes such as motion profile.
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