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ABSTRACT

Multi-camera three-dimensional (3D) tracking technology is
the most effective gateway to acquire quantitative motion data
for studying behaviors of flying swarms. While the state-of-
the-art tracking methods usually estimate positions of flying
targets, here we present the 3D tracking method which es-
timates both a target’s position and its orientation for track-
ing individuals of flying swarms, in which videos captured by
at least three synchronized and calibrated cameras are nec-
essary. Experiments show the proposed method outperforms
the state-of-the-art methods.

Index Terms— Target swarm, 3D tracking, orientation,
Rao-Blackwellization, Kalman filtering

1. INTRODUCTION

Motion measurement for animals in swarms has been enabled
by recent advances in video tracking [1–3]. The existing 3D
tracking methods have demonstrated success in tracking fly-
ing targets [4–7]. As tracking individuals of flying swarms us-
ing videos captured by multiple cameras, the 3D motion state
estimation is a challenging problem: the entire swarm has to
be filmed in all cameras’ field-of-view, and thus makes the ob-
servation of each target very coarse. Each target only takes up
a small image area and resembles each others. That is, there
is little visual cues for distinguishing and associating observa-
tions with targets. Though the state-of-the-art methods report
results on tracking tens to hundreds of flying targets [4–10],
they usually estimate positions of a flying target through time.
There are few works focusing on investigating the ability of
estimating a target’s flight attitude in a 3D tracking system.

As a flying swarm (that usually contains hundreds of
individuals) is filmed by multiple (≥ 3) synchronized and
calibrated cameras, we aim to track individuals of the fly-
ing swarm and output sequential motion states including
position and orientation. The main contribution is the 3D
position and orientation tracking algorithm, in which the
Rao-Blackwellization technology is adopted to partition the
state space of a target’s position and of a target’s orientation.
Meanwhile, we developed an algorithm for updating the 3D
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motion state using two-dimensional (2D) observations across
views.

2. MODELING A FLYING TARGET

A flying target (e.g. a fly, as shown in Fig. 1a) can be briefly
defined by an articulated model, as shown in Fig. 1b, if we
assume its body undergoes rigid body motion. Here a target’s
body includes its head, throat, and abdomen. The tracking
system usually focuses on the motion state of a target’s body
motion. That is, the wings can be neglected from the articu-
lated model. At this point, we can use an ellipsoid to model a
flying target. The flight attitude of a flying target is character-
ized by pitch, yaw, and roll angles against the body-frame, as
shown in Fig. 1c.

Fig. 1. Modeling a flying target.

Most animals capable of flight have bilateral symmetric
(or plane symmetric) body. Here we assume that a target’s
body is radial symmetric (or axial symmetric). Following this
assumption, an axis of symmetry (center axis) is found in the
body, e.g. the mean axis of the ellipsoid. At this point, given
the center axis, a target’s orientation can be defined by Euler
angles of its center axis, polar angle φ and azimuthal angle θ
against the reference coordinate frame in Euclid, as shown in
Fig. 1c. Therefore, instead of estimating a target’s flight atti-
tude, we estimate a target’s orientation in this work. A flying
target’s motion state is thereby defined by its position (x, y, z)
and orientation (θ, φ). That is, a flying target is modeled as a
line-segment (the center axis), parameterized by

{x, y, z, θ, φ, l̃} (1)

where l̃ is a constant scalar value defining the length of body.
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3. THE 3D-POT ALGORITHM

The algorithm we propose is the 3D position and orientation
tracking (3D-POT) algorithm. The 3D-POT algorithm treats
each target as a dynamic system and thus adopts the Bayesian
inference framework to solve the problem.

3.1. State and state space partition

By definition, a flying target is parameterized in (1), the sys-
tem state can thereby be defined as

{x, y, z, x−, y−, z−, θ, φ} (2)

where the “x−” terms are the position of the target at previ-
ous moment. In this study, the state transition does not rely
on the velocity prior. It is important for tracking targets in
a swarm since the targets may take complex maneuvers and
thus violate the smooth motion assumption.

It is known that the polar angle (φ) of the orientation is in
a damped range about 45◦ to the negative direction of gravity
for the reason of aerodynamics [11]. It means that φ changes
independently of the position movement. But, for the reason
of kinematic, the azimuthal angle (θ) of the orientation has
to align to the azimuthal angle of the target’s motion direc-
tion in most of time. That is, θ changes conditionally on the
position movement. The state can thereby be partitioned into
two groups: the position state X and the orientation state O,
which are denoted by

X = {x, y, z, x−, y−, z−}, O = {φ, θ} (3)

With the above idea, this facilitates the different dynamic
models of these two groups. The relationship between these
two groups is that changes of orientation states are condi-
tioned on the changes of position states.

3.2. State transition and observation

The evolution of the position state from moment t− 1 to mo-
ment t is controlled by a non-linear motion model, which is
defined by

Xt = f(Xt−1) + υt−1 (4)

where f(Xt−1) denotes the dynamic function and υt−1 de-
notes the state transition noise. Conditioned on the position
state at moment t, the evolution of the orientation state from
moment t− 1 to moment t is controlled by a linear and Gaus-
sian motion model:

Ot = GOt−1 + νt−1, νt−1 ∼ N (0,Q) (5)

where G denotes the linear transition function and νt−1 de-
notes the spherical wrapped Gaussian noise.

In the video tracking system, images (frames of a video)
from camera views are the raw input of the tracking sys-
tem. An image includes the observation of many targets

Algorithm 1 The 3D-POT Algorithm.
Input: The target’s information at time t − 1, e.g. state, ap-

pearance; particles at time t − 1:{sit−1, i = 1..N}; mea-
surements at moment t: {χv,j , v = 1..vn, j = 1..jv,n}.

Output: Particles at moment t, and the expectation, ŝt.
1: for i = 1 to N do
2: Initial particle sit = (∗, ∗, ∗);
3: Sample the position state of sit = (Xi

t , ∗, ∗);
4: Kalman prediction, sit(X

i
t , µ

i
t|t−1, σit|t−1) (7);

5: Associate measurements with sit (8);
6: Evaluate “alive” particle’s weight, wit;
7: end for
8: Normalize wit =

wit∑N
i=1 w

i
t

, i = 1..N ;

9: Particles resampling;
10: for i = 1 to N do
11: Kalman update, sit(X

i
t , µ

i
t, σ

i
t) (9,10);

12: end for
13: return {sit, i = 1..N},sit = (Xi

t , µ
i
t, σ

i
t) and

ŝt = E(st) =
∑N
i=1 s

i
t ∗ wit;

“observed” by the camera. The observation of a certain target
at moment t, Zt, is usually the high level data (measurement)
extracted from the raw input. Since we represent a target with
an ellipsoid, a measurement χ = {b, e(b)} of the target in-
cludes two components: (i) a blob b which denotes the image
patch of the projection of the ellipsoid; (ii) an ellipse e(b)
which denotes the silhouette of the ellipsoid and is an ellipse
fitted to the blob b. The two components of a measurement
reflect the two aspects of an observation: appearance and
orientation. Measurements at each moment are defined as
{χv,j , v ∈ {1, ..., vn}, j ∈ {1, ..., jv,n}}, where v denotes a
camera view.

3.3. Algorithm overview

The aim of recursively estimating the posterior density of
position states can be accomplished using particle filter. At
the same time, conditioned on the nonlinear position states,
Kalman filter can be used for obtaining orientation states.
That is, the posterior of the system is factorised by

p(Xt, Ot|Zt) = p(Xt|Zt)︸ ︷︷ ︸
PF

p(Ot|Xt, Zt)︸ ︷︷ ︸
KF

(6)

That is, the Rao-Blackwellization [12] is employed to solve
the system’s posterior distribution.

Briefly, the 3D-POT algorithm approximates the sys-
tem’s posterior density at moment t by N weighted particles:
{sit, wit|i = 1..N}. Each particle contains both the position
state and the parametric representation of the distribution of
the orientation states, which consists of the mean value of the
orientation states µit = (φit, θ

i
t)

T and the error covariance σit.
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That is, each particle is defined by a triplet sit = (Xi
t , µ

i
t, σ

i
t).

Algorithm 1 depicts the 3D-POT algorithm, in which the po-
sition tracking component is adapted from previous work [6].

3.4. Kalman prediction

The evolution of the orientation state is controlled by the lin-
ear model defined by (5). By using straight forward applica-
tion of the Kalman filter, the prediction of mean µit|t−1 and
error covariance σit|t−1 are computed as

µit|t−1 = Gµit−1 + νt−1, νt−1 ∼ N (0,Q)

σit|t−1 = Gσit−1G
T + Q

(7)

where νt−1 denotes the spherical wrapped 2D Gaussian noise.
At this point, we have the particle sit = (Xi

t , µ
i
t|t−1, σ

i
t|t−1),

in which µit|t−1 = (θit|t−1, φ
i
t|t−1)T.

3.5. Measurement Association

At each moment, measurements are extracted from images.
It is necessary to determine the association between a cer-
tain target and a measurement in a certain camera view. That
is, a measurement has to be assigned to a target if the target
is “observed” in that camera view. This is the task of mea-
surement association, and we propose the pixels occupancy
test algorithm for solving the task. The algorithm is derived
from the idea of probability gating [8,13], and simultaneously
solves the association problem across all camera views. By
definition, the algorithm suggests that any measurements in a
certain image region are associated with a certain target with
identical probability. In order to determine the probability
gate for a target, we adopt a sphere to represent a target in 3D
space and project the sphere onto camera views, and thus the
sphere’s image serves as the probability gate. Let Γ(sit) define
the association between the particle sit = (Xi

t , µ
i
t|t−1, σ

i
t|t−1)

and measurements χv,j , v = 1..vn, j = 1..jv,n,

Γ(sit) = {(χv,j , η) | η > η̃, v = 1..vn, j = 1..jv,n}

η =
κ(Ω(Xi

t , χv,j))

κ(bv,j)
Ω(Xi

t , χv,j) = {PvΥ3}
⋂
bv,j

(8)

where κ(·) defines the function counting the number of pix-
els, and bv,j denotes the blob component of the measurement
χv,j . Here Υ3 denotes the discrete points sampled on the
sphere which locates atXi

t(x
i
t, y

i
t, z

i
t) with the diameter equal

to l̃, and Pv is the projection matrix of camera v; and thereby,
Ω(Xi

t , χv,j) defines the common pixels. In (8), η̃ is a scalar
positive-valued percolation threshold which varies from 0 to
1 for leveraging the restriction on association. Larger η̃ means
more restrictive association. Particles which successfully as-
sociate with measurements in all views are “alive” particles;
others are “dead” particles and thereby be neglected.

(a) (b)

Fig. 2. The blob bv is marked in red and the ellipse e(bv)
is yellow. The cyan ellipse is e(PvΥ3) and the cyan lines
are normal lines at Ne points on the ellipse. The blue circles
denote cross points on e(bv). Here only two views are shown.

3.6. Kalman updating

By using straight forward application of the Kalman filter, up-
dating the mean µit and error covariance σit for the orientation
state are computed as

µit = µit|t−1 + σit|t−1K
i
t∆Ot

σit = σit|t−1 −Ki
tCσ

i
t|t−1

Ki
t = σit|t−1C

T(Cσit|t−1C
T + R)−1,

(9)

where R is the covariance of the Gaussian noise for observing
the orientation state and C denotes the observation matrix. It
shows that updating the mean value µit depends on computing
∆Ot, which is the difference between the predicted orienta-
tion and the observed orientation at moment t. However, since
we only have 2D observations a target’s orientation is unable
to be observed. That is, it is infeasible to compute ∆Ot di-
rectly. In this paper, we propose an algorithm for computing
∆Ot using 2D measurements across views.

According to the aforementioned, the target represented
by particle sit has the motion state (xit, y

i
t, z

i
t, θ

i
t|t−1, φ

i
t|t−1).

Therefore, we can generate an ellipsoid to represent the target
where its center locates at (xit, y

i
t, z

i
t) and the direction of its

center axis is defined by the orientation (θit|t−1, φ
i
t|t−1), and

the length of its center axis equals to l̃ . Let Υ3 denote the
points sampled on the ellipsoid. The difference between the
predicted orientation and the observed orientation, ∆Ot, is
thereby computed as

∆Ot ∝ exp(−
∑vn
v=1 d(e(bv), e(P

vΥ3))− d̂),
χv(bv, e(bv)) ∈ Γ(sit)

(10)

where the function d(·) computes the distance between the
ellipse e(bv) and the ellipse, e(PvΥ3), fitted to the points
projected from Υ3. Here d̂ denotes the standardized distance
between two ellipses. The function d(·) computes the accu-
mulative pairwise distance among cross points on lines and
two ellipses. Fig. 2 depicts the procedure. These lines are
norm lines at Ne points which are uniformly sampled on the
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Fig. 3. Comparison of the proposed method with state-of-the-
art methods on position estimation. Lower is better for MOTP
scores and higher is better for MOTA scores [15].

ellipse e(PvΥ3). We choose Ne = 20 and have done a para-
metric study to find the most appropriate parameter range for
d̂, and we found that d̂ = 50 works better for the experiments.

4. EXPERIMENTS

The real-world swarms usually have hundreds of individu-
als with similar appearance, manually creating the 3D ground
truth is infeasible: (i) each target only has small image area
and resembles each other; (ii) there are only 2D observations.
Using simulation data to evaluate performance is more prefer-
able for methods on tracking large number of targets [5–7,
14]. By carefully designed simulation data we evaluate per-
formance of the proposed method and compare with the state-
of-the-art methods: Wu2009 [5], Liu2012 [6], Ardekani2013
[7]. We adopt the CLEAR MOT metrics [15] to measure
the performance of position estimation and choose the body
length l̃ = 3 mm as the matching criterion.

4.1. Dataset

The sequential 3D positions of each target are generated us-
ing a model adapted from boids [16]. Then the motion direc-
tion M(θ, φ) is computed at each moment and the orientation
O(θ, φ) is thereby computed as

O =

(
M(θ)
π
4

)
+ n, n ∼ N (0, 1) (11)

where n denotes the white noise. Given a target’s position
and orientation, a shape is generated. At each moment,
all targets represented by shapes are filmed by simulated
cameras. We applied the “Machine Vision Toolbox” [17]
to simulate the three-camera system, and generated five
simulation datasets (D1-D5) with the number of targets
N = {50, 100, 150, 200, 250}, respectively.

4.2. Performance evaluation

Compared to the proposed method, Fig. 3a shows that
Wu2009 and Ardekani2013 obtain nearly same scores (low

Table 1. Performance on orientation estimation
Dataset D1 D2 D3 D4 D5

Precision 0.93 0.83 0.84 0.80 0.73

Recall 0.84 0.76 0.73 0.69 0.64

F1-Measure 0.88 0.79 0.78 0.74 0.68

131 132 133 134 135

136 137 138 139 140

Fig. 4. The sharp turn in 10 frames (0.1 sec).

MOTP score) on D1 and D2 but worse results on D3-D5.
Wu2009 tracks targets using 2D observations and then re-
constructs 3D trajectories using 2D trajectories across views.
Its precision mostly depends on the target detection at the
first step, and thereby decreases as the population increases.
Ardekani2013 reconstructs 3D positions as candidates and
then tracks them in 3D. While several targets overlapped in
images, the candidates are thereby drifted.

Fig. 3b shows Liu2012 obtains almost same scores (high
MOTA score) on D1 and D2, as the proposed method does;
but Liu2012 shows fastly decreasing as the population in-
creases. Liu2012 has no data association approach and ac-
cepts particles even if they are only “observed” in one camera
view, and thus obviously increases the possibility of trackers
being distracted by other targets and thus decreases its robust-
ness.

While evaluate the performance reported in Table 1, the
matching criterion is that the angle between an estimated ori-
entation and the ground truth is less than 5◦. Though the per-
formance is dominated by the position estimation, the Kalman
filter’s ability of smoothness poses negative effects. It usually
delays the tracked orientation while a target takes sharp turn,
as shown in Fig. 4 on real-world data.

5. CONCLUSION

The proposed tracking method performs well even though
the raw observation is very limited image areas for flying tar-
gets. The association algorithm guarantees the accuracy and
robustness of the proposed tracking method, and the Kalman
updating algorithm enables tracking a target’s orientation.
Moreover, we have successfully tracked ≈ 700 flies flying in
a flight arena (data not presented).
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