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ABSTRACT
The establishment of robust target appearance model over

time is an overriding concern in visual tracking. In this pa-

per, we propose an inverse nonnegative matrix factorization

(NMF) method for robust appearance modeling. Rather than

using a linear combination of nonnegative basis vectors for

each target image patch in conventional NMF, the proposed

method is a reverse thought to conventional NMF tracker. It

utilizes both the foreground and background information, and

imposes a local coordinate constraint, where the basis matrix

is sparse matrix from the linear combination of candidates

with corresponding nonnegative coefficient vectors. Inverse

NMF is used as a feature encoder, where the resulting coeffi-

cient vectors are fed into a SVM classifier for separating the

target from the background. The proposed method is tested

on several videos and compared with seven state-of-the-art

methods. Our results have provided further support to the

effectiveness and robustness of the proposed method.

Index Terms— inverse NMF, local coordinate constraint,

incremental NMF, visual tracking

1. INTRODUCTION

Visual tracking has been consolidated its important research

status in computer vision with wide applications ranging from

video surveillance to vehicle navigation [1]. One essential as-

pect in visual tracking is to model the appearance of objects.

Such modeling methods can be either generative [2–4] or dis-

criminative [5,6] with pros and cons. Generative methods fo-

cus on searching the most similar candidate to the target with

minimizing reconstruction error; Discriminative methods cast

the tracking problem as a binary classification, separating the

target from the background.

Nonnegative Matrix Factorization (NMF) has recently

been applied to visual tracking with variety works including

Orthogonal Projective NMF Tracker [7], Constraint On-

line NMF Tracker [8] and Constrained Incremental NMF

Tracker [9]. In NMF, a nonnegative data matrix X is decom-

posed into two non-negative matrices U and V (X ≈ UV),

where U is the basis matrix and the columns of V are coeffi-

cients vectors. In these methods, as generative trackers, NMF
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with different constraints (e.g., sparsity constraint, graph-

based regularization) are adopted into appearance modelling.

Different form previous work, NMF in [10] serves as an

approach of feature extraction. After solving nonnegative

coefficient vectors vi of different corresponding candidates

based on U, a Naive Bayes classifier is trained to distinguish

between the target and the background.

It might be tempting to agree that these methods have

shown good performance for a range of scenarios. However,

further exploiting discriminative information could improve

the robustness of tracking. For example, in existing gener-

ative NMF trackers, background information are not taken

into consideration, leading to lack of discriminative ability in

these NMF’s variants. In [10], only basis matrix U is adopted

to represent the target, whereas the corresponding encoding

vectors vi are ignored.

Motivated by the above issues, this paper proposes a novel

tracking method, the inverse NMF tracker, that is a reverse

thought to conventional NMF tracker. The main novelties of

the proposed method include: (a) an inverse NMF representa-

tion formulation is proposed to represent the basis matrix by

disparate candidates with corresponding coefficient vectors,

which combines both the foreground and background infor-

mation; (b) a local coordinate constraint is imposed on en-

coding vectors for local similarity and sparsity; (c) incremen-

tal learning is introduced to the proposed tracker for online

updating appearance models.

2. THE BIG PICTURE OF PROPOSED METHOD

As shown in the block diagram of Fig.1, the proposed method

can be briefly described as follows. First, a simple tracker

(e.g. IVT [2]) is used as the initialization process on the first

m frames to collect target patches in each frame. This forms

the positive template set Tpos = [Tp
1,Tp

2, · · · ,Tp
N ] (or called

the initial data matrix X ∈ R
M×N ), and the negative tem-

plate set, Tneg = [Tn
1 ,Tn

2 , · · · ,Tn
r ] ∈ R

M×r from the back-

ground. The positive template set is then decomposed into the

basis matrix U ∈ R
M×K and coefficient matrix V ∈ R

K×N

by using Graph-based NMF [11]. After that (frames > m),

new candidate object patches are sampled using a particle fil-

ter, forming Y1:S = {y1, y2, ..., yS} ∈ R
M×S . The proposed

inverse NMF is then applied for estimating the coefficient

vectors Cpos, Cneg and C from the positive samples Tpos,

negative samples Tneg and candidates Y, and fed into a SVM
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Fig. 1. Illustration of the proposed inverse NMF framework

classifier for training, and subsequently employed for assign-

ing the encoding vector c(i) to the target or the background.

3. PROPOSED INVERSE NMF TRACKER
3.1. Review: Conventional NMF and Its Variants
For the sake of mathematical convenience and easy to use

in the subsequent description, methods and formula in some

conventional NMFs are briefly summarized. It provides a

justification for NMF’s widespread application such as face

recognition [12], data clustering [13]. Basis vectors in U rep-

resents latent semantic information of original data in a sub-

space, each basis vector of which reflects the centroid of a

cluster.

Based on NMF, to preserve the similarity between the co-

efficient vectors and the data points, a Laplacian regulariza-

tion term is introduced into NMF [11]:

O = ‖X − UV‖2F + λTr(VLVT ) (1)

where λ is graph-based regularization parameter. The graph

Laplacian matrix L = D − W, where D is a diagonal matrix

with Dii =
∑

j Wij and W is the weight matrix,

Wij =

{
e−

‖xi−xj‖2
σ2 if xi ∈ Nk(xj), or xj ∈ Nk(xi)

0 otherwise

An alternative way, that simultaneously takes into account

the similarity and sparsity, is to use a local coordinate coding

constraint [14]. The columns of the basis matrix U can be

considered as a set of anchor points, and each data point in the

original space can be approximated by a linear combination

of only a few anchor points [15].

Q =

N∑
i=1

(μ

K∑
k=1

|vki|·‖uk−xi‖2) = μ

N∑
i=1

‖(xi1T−U)Λ
1/2
i ‖2

(2)

where μ is the regularization parameter, and 1 ∈ R
K de-

notes the column vector whose entries are all ones and Λi =
diag(vi) ∈ R

K×K . This term in (2) is the local coordi-

nate constraint, that imposes penalty if uk is far away from

xi when the new coordinate vki is large.

3.2. Estimate Coefficient Matrices by the Inverse NMFs
The implicit rationale behind inverse NMF is also based on

a perspective of clustering representation in computer vision

applications. As a reverse thought to conventional NMF, the

basis matrix U is spanned by candidates Y (U ≈ YC). Each

row c(i) in C corresponds to the responses of one candidate on

basis matrix U, which can be regarded as discriminative fea-

ture for classification in visual tracking. Compared with the

reverse sparsity theory in [16], the coefficient vector c(i) is

natural sparse due to distinct meanings in NMF. If Y contains

a set of good candidates (i.e., similar to the target), these good

candidates will spread among basis vectors. A few nonzero

coefficients in c(i) are needed, as basis vectors can be easily

represented their neighbouring good candidates. For bad can-

didates, they seems to be incoherent in a subspace spanned

by basis vectors. And there is not definite link between the

background and the target representation U. If Y contains a

set of bad candidates (from the background), it is difficult for

these bad candidates to represent basis vectors accurately and

sparsely. These corresponding coefficient vectors do not hold

the sparsity property as that in the positive sample case.

By exploiting this difference between the candidates in

the target and the background, the basis matrix U can be

mapped into associated coefficient vectors. Since only co-

efficient vectors from good candidates are associated with

physical meanings, coefficient vectors are used as discrimi-

native features to separate the target from the background.

Incorporating the local coordinate constraint into our in-

verse NMF method to preserve the similarity of coefficient

vectors for the similar candidate features and sparsity in these

vectors simultaneously. We estimate the coefficient matrix C
by employing the following objective function using the con-

strained optimization,

min
C

‖U − YC‖2F + μ

K∑
k=1

‖(uk1T − Y)Ω
1/2
k ‖2

s.t. C ≥ 0

(3)

where 1 ∈ R
S and Ωk = diag(ck) ∈ R

S×K . We estimate the

positive coefficient vector Cpos using the target patches Tpos

(X), by the following formula:

min
Cpos

‖U − XCpos‖2F + μ

K∑
k=1

‖(uk1T − X)Γ
1/2
k ‖2

s.t. Cpos ≥ 0

(4)

where 1 ∈ R
N and Γi = diag(cpos)i ∈ R

N×K . We can eas-

ily derive the formula for estimating Cneg from the negative

templates Tneg in a similar fashion.

It is worth noting that the objective functions in (3) and

(4) for estimating Cpos, Cneg and C are differentiable convex

functions, and the nonnegative constraints are non-smooth

convex functions. Hence, their solutions can be obtained by

minimizing the cost functions with respect to Cpos, Cneg and

C, by using the accelerated proximal gradient (APG) algo-

rithm in [4].
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3.3. Identify Candidates
The estimated CT

pos and CT
neg from inverse NMFs are used as

the features for the positive and negative samples, for training

a SVM classifier. Once C is obtained, the SVM classifier is

employed to assign the encoding vector c(i) to the target or the

background. The corresponding candidates Y1:S is divided

into positive candidates Y+ and negative candidates Y−.

To make our algorithm more robust, a coarse-to-fine

searching scheme for the optimal candidate is proposed. Af-

ter obtaining Y+ and Y−, we do not exactly choose the

positive candidate with the highest confidence value as our

tracking result 1. The observation likelihood can be mea-

sured by the reconstruction error of positive candidates Y+

as shown in Fig.1 (noting that the time index is omitted for

simplicity):

p(y+i |xi) = argmax
j

exp(−‖y+
i − Uvj‖22) ∀j (5)

where y+i represents the i-th positive candidate from Y+, and

vj denotes the j-th column of coefficient matrix V. This

searching scheme incorporates the merit of generative meth-

ods into the classification problem. The optimal state x∗ from

the positive samples Y+ with the minimal reconstruct error is

chosen as the tracking result.

3.4. Incremental Learning for Online Updating
Incremental learning is applied for maintaining timely target

and background appearance models. For the negative tem-

plate set, the model is updated in each short time interval (e.g.,

5 frames in our tests) as the tradeoff between the computation

and the model fitness. With the new optimal candidate added

into the positive template set X, our appearance model need

to be update promptly. It is impossible to recalculate U and

V totally just because of time-consuming. Although incre-

mental learning is studied in both NMF [17] and GNMF [18],

we adopt the incremental learning in a similar spirit to that

in GNMF, however, fits to updating U and V in the proposed

inverse NMF. This can be described as follows. Let Xt+1,

Ut+1, Vt+1, Et+1, Wt+1, and Dt+1 be the corresponding

matrices when the (t + 1)-th sample x arrives. Noting that

Xt+1 = [Xt, x] ∈ R
M×(t+1), Vt+1 = [Vt, v] ∈ R

K×(t+1),

the relation [Xt, x] ≈ Ut+1 [Vt, v] holds. The incremental

learning on each element uik in U and vi in v may then be

written by the following updating equations:

uik ← uik
[Xt+1(Vt+1)T ]ik

[Ut+1Vt+1(Vt+1)T ]ik

vi ← vi
[(Ut+1)T x + λVt(Wt+1):,t+1 + λvwend]i

[(Ut+1)T Ut+1v + λVt(Dt+1):,t+1 + λvdend]i

(6)

where (Wt+1):,t+1 is the (t + 1)-th column of the Laplacian

matrix W, and wend = (Wt+1)t+1,t+1 is the element from

the last row and last column of W. Similar definition holds

for dend in the matrix (Dt+1):,t+1.

1In our experiments, statistical results show that the number of Y+ ac-

counts for about 10% of the whole Y.

The proposed inverse NMF tracker is a combination of

using the inverse NMF method for finding sparse encoding

vectors and using the particle filter for finding the best target

candidate. The flowchart of the inverse NMF tracking algo-

rithm is summarized in Algorithm 1.

Algorithm 1: Algorithm for Inverse NMF Tracker

1 Initialization: Extract templates T in the first m frame.

2 Construct the weight matrix W by using (3.1) and the

Laplacian matrix L = D − W.

3 Obtain X, U, V by (1).

4 for t = m+ 1 to the end of the sequence do
5 S particles are sampled;

6 Inverse NMF: obtain encoding vector: Cpos, Cneg

and C by the APG approach;

7 Train a SVM classifier by CT
pos, CT

neg , and then

classifies encoding vector c(i) of C;

8 for each positive particle y+t do
9 Compute their likelihood by (5);

10 end
11 Choose x∗

t with the minimal reconstruct error;

12 Update: for each 5 frames do
13 Update positive and negative template sets;

14 Recalculate W and D in (3.1);

15 Update U and v by (6);

16 end
17 end

4. EXPERIMENTS

Setup: The proposed tracker was implemented in MATLAB

on a PC with Intel Xeon E5506 CPU (2.13 GHz) and 24 GB

memory. The following parameters were used for our tests:

each observation (i.e. patch of image) was normalized to

32 × 32 pixels; the graph-regularized parameter was set to

λ = 1; kNN was fixed to 10 nearest neighbors; the spread

σ = 2 was used in the Gaussian Kernel; the number of initial

positive templates and the negative templates were N = 140
and r = 280 respectively from the first 5 frames; the number

of basis vectors was K = 16; the local coordinate regulariza-

tion parameters was μ = 0.5; the iteration number was set to

5, and the Lipschitz constant was 1/0.00018 in the APG.

Methods comparison: The proposed method is also com-

pared with seven state-of-the-art methods, including: DSSM

[16], ASLA [19], L1 Tracker [3], L1-APG [4], MTT [20],

IVT [2], and MIL [21].

Results: Fig.2 shows screen shots of tracking results from

different trackers. Tab.1 shows the performance of these

methods based on the center location error (CLE), where a

small CLE value indicates more accurate hence better track-

ing. Tab.2 shows the performance of different methods based

on the overlap rate between the tracked bounding box and the
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(a) (b) (c)

(d) (e) (f)
L1 DSSM MTT L1APG IVT MIL ASLA Ours

Fig. 2. Representative frames of some sampled tracking results. And subfigures from top to bottom, left to right: (a) - (f), from video David3, Caviar1,

Caviar3, Jumping, Deer and Basketball.

Table 1. Performance in terms of ”center location error” (CLE) in pixels.

Red and blue colors indicate the best and 2nd best performance, respectively.

Sequence DSSM ASLA L1 MTT IVT MIL L1APG Ours

Human7 80.4 2.9 103.7 17.0 54.1 21.8 27.8 7.3
David3 99.2 87.4 100.4 363.3 100.2 38.4 204.4 5.0
Jumping 115.8 45.4 51.3 58.7 27.9 9.7 97.5 5.2
Deer 10.0 10.7 97.9 15.2 123.8 225.8 197.9 8.1
Caviar1 22.1 1.5 34.6 55.2 98.5 48.5 95.0 2.5
Caviar3 61.5 2.2 65.9 64.8 66.2 57.8 26.6 5.5
Carscale 17.8 48.8 66.8 83.7 11.7 27.3 81.2 14.9
Faceocc1 23.5 7.7 6.5 8.9 17.3 11.7 32.3 6.3
Basketball 242.1 21.0 126.1 117.2 310.4 139.7 97.7 11.4
Car4 55.0 3.5 4.1 223.0 96.1 2.6 60.1 4.4

avg. 72.8 23.1 65.7 107.9 108.2 63.6 61.9 7.3

ground truth box from these methods on several videos. The

overlap rate is defined as e = area(RT∩RG)
area(RT∪RG) , where RT and

RG are the area of tracked and ground truth box, respectively.

DavidOutdoor: The challenging issues in this video shown

in Fig.2(a) are mainly due to heavy occlusions and pose
changes. L1, L1-APG, IVT, MTT and DSSM completely

fail at frames #36, #34, #57, #64, #75 and #140. When

David passes through the tree, MIL suffers from severe drifts.

When pose change occurs, the proposed tracker performs

well without drifting whereas ASLA does not.

Caviar1 and Caviar3: The two videos in Fig.2(b)(c) are typ-

ical ones with heavy occlusion. Without heavy occlusions,

all methods achieve favorable performance. However, the

existing methods either fails to track or tracks with degraded

accuracy after the target is heavily occluded. From the track-

ing results in these videos, ASLA and our proposed tracker

are shown to be more robust against severe occlusions. The

remaining trackers, L1, L1APG, IVT, MTT and DSSM, show

difficult in capturing appearance changes after occlusions,

where the appearance becomes much dissimilar to their ini-

tial one.

Jumping and Deer: Tracking in these 2 videos, as shown in

Fig.2(d),(e), are affected by fast motion and motion blur. It is

difficult to accurately predict the location of the target when

abrupt motion occurs, and the appearance changes due to mo-

tion blur posed some challenges for accurately locating the

target. In the Jumping video, before #249 frame, most track-

ers have poor tracking accuracy except IVT and the proposed

tracker. After #249 frame, only the proposed tracker is able

to track the target object. In the Deer video, the proposed

Table 2. Performance in terms of ”overlap rate” e. Red and blue colors

indicate the best and 2nd best performance, respectively.

Sequence DSSM ASLA L1 MTT IVT MIL L1APG Ours

Human7 0.31 0.81 0.12 0.48 0.11 0.29 0.27 0.71
David3 0.33 0.46 0.35 0.09 0.31 0.41 0.14 0.77
Jumping 0.24 0.10 0.30 0.24 0.49 0.53 0.12 0.67
Deer 0.61 0.60 0.07 0.55 0.04 0.04 0.05 0.61
Caviar1 0.42 0.89 0.28 0.28 0.27 0.25 0.28 0.83
Caviar3 0.14 0.84 0.20 0.14 0.13 0.11 0.19 0.69
Carscale 0.75 0.45 0.36 0.49 0.62 0.42 0.55 0.65
Faceocc1 0.69 0.87 0.87 0.84 0.72 0.82 0.59 0.88
Basketball 0.038 0.56 0.01 0.03 0.02 0.03 0.25 0.63
Car4 0.52 0.91 0.84 0.15 0.45 0.91 0.34 0.88

avg. 0.40 0.65 0.33 0.26 0.35 0.37 0.32 0.74

fps. 0.86 0.66 0.23 1.02 20.41 18.86 4.41 1.23

tracker and DSSM shows promising results as compared with

the proposed tracker.

Basketball: The video, shown in Fig.2(f), contains drastic

heavy occlusions, pose variation and illumination variation.

ASLA and our proposed method accurately track the basket-

ball player when the player is occluded by others, and MIL

loses tracking accuracy to some extent when the player suf-

fers pose variation. The other methods are not adapt to the

appearance changes. When comes to illumination variation,

ASLA cannot locate the target to obtain accurate appearance

model.

In summary, our test results on these videos have shown

that ASLA and the proposed tracker are effective and robust to

heavy occlusions. Only our method adapts the scale variation,

pose changes and illumination variation of the target.

5. CONCLUSION
This paper proposes an inverse NMF method for visual track-

ing. It combines the merit of generative tracking methods

with the discriminative methods. The proposed inverse NMF

method not only leverages the minimal reconstruction error

to search the optimal candidate but also takes the background

information into consideration. Using separately estimated

coefficient vectors that are served as encoding features from

the foreground and background in inverse NMF, the proposed

tracker shows enhanced discriminant ability during the track-

ing. Quantitative and qualitative comparisons with seven

state-of-the-art trackers on ten videos have demonstrated the

effectiveness and robustness of the proposed tracker.
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