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ABSTRACT
Traditional temporal prediction relies on motion compen-

sated pixel copying operations. Such per-pixel temporal pre-
diction was shown in prior work to be sub-optimal since it
ignores the underlying spatial correlation. Transform domain
temporal prediction (TDTP) was thus proposed previously
to first achieve spatial decorrelation within the block using
DCT, then apply an optimal one-to-one prediction per fre-
quency. However, for sub-pixel motion compensation, the
low-pass filter used for interpolation interferes with TDTP.
In this paper, we propose an extended block based TDTP,
which: i) completely disentangles spatial and temporal cor-
relations to fully account for the sub-pixel interpolation ef-
fect, and ii) fully exploits spatial correlations around refer-
ence block boundary. Experimental evidence is provided for
substantial coding gains over standard HEVC.

Index Terms— Temporal prediction, sub-pixel interpola-
tion, spatial correlation, DCT, video coding

1. INTRODUCTION

Inter prediction [1] plays a critical role in video coders to
exploit temporal dependencies. Current video coding stan-
dards, such as HEVC, employ pixel domain block matching
to predict each block in a frame from a similar block in previ-
ously reconstructed frames. The prediction error is then trans-
formed, quantized and sent to the decoder. In our past work
[2, 3, 4], we have shown that this one-to-one pixel-copying
approach is suboptimal, because it ignores the strong spatial
correlation in pixel domain. In [2], we proposed transform
domain temporal prediction (TDTP), where spatial decorrela-
tion is (largely) achieved to allow one-to-one transform coeffi-
cient prediction. Moreover, TDTP also captured the variation
in temporal correlation across frequencies, which is otherwise
hidden in the pixel domain. In [4], an asymptotic closed-loop
(ACL) design approach was proposed to overcome the design
instability due to quantization error propagation.

A critical challenge for TDTP is its interference with sub-
pixel interpolation filter. TDTP exploits the transform (DCT)
domain temporal correlation for blocks along the motion tra-
jectory, and forms a first-order AR process per frequency. As

This work was supported in part by a gift from LG Electronics Inc.

0.999 0.998 0.997 0.970 0.944 0.930 0.842 0.808
0.996 0.978 0.979 0.963 0.957 0.884 0.900 0.797
0.983 0.984 0.975 0.944 0.978 0.931 0.857 0.794
0.967 0.980 0.977 0.965 0.958 0.920 0.930 0.768
0.960 0.950 0.962 0.964 0.942 0.889 0.904 0.756
0.927 0.938 0.934 0.922 0.919 0.882 0.831 0.748
0.898 0.881 0.919 0.906 0.869 0.815 0.700 0.512
0.835 0.760 0.826 0.769 0.717 0.640 0.470 0.339

Table 1. Transform domain temporal correlation
for 8x8 DCT coefficients for mobile sequence at QP=22

illustrated in Table 1, the temporal correlation tends to be
close to 1 at low frequencies, and less than 1 at high frequen-
cies, which implies high frequency components are scaled
down more than low frequency components. This scaling for
temporal prediction, is coincidentally similar to the frequency
response of the low-pass filters used for sub-pixel interpola-
tion, resulting in an interference between interpolation and
prediction. In [4], the predictors were designed conditioned
on the sub-pixel location (i.e., a particular combination of hor-
izontal and vertical interpolation filters), and applied on the
reference block obtained after interpolation. This approach
effectively classifies the blocks based on the filters employed,
but it does not disentangle the effect of interpolation filter on
temporal prediction.

In this paper, we propose an extended block based TDTP
(EB-TDTP) to fully disentangle the effect of interpolation,
and appropriately account for the filters. The division of
natural video data into blocks never strictly limits the spa-
tial correlation to inside a block, and almost always, spatial
correlation exists across a block boundary, as shown for an
example in Fig. 1. Sub-pixel interpolation filter uses neigh-
boring pixels outside the block boundary, and hence accounts
for spatial correlation outside the block to some extent. How-
ever, employing the interpolation filter projects the pixels
of a block and its neighbors along the boundary to a sub-
space. Transforming this block into frequency domain, will
only achieve spatial decorrelation of information in this sub-
space. Thus employing transform domain interpolated block
as a prediction reference for temporal prediction, does not
disentangle the spatial and temporal correlation of the data
completely, leading to suboptimality. In order to fully ex-
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Fig. 1. An example of spatial correlation
within a block and across its boundary

ploit the spatial correlation by completely separating it from
temporal correlation, we propose employing TDTP with an
extended block that is centered around the reference block
and covers all the pixels required to generate the interpo-
lated reference block. The sub-pixel interpolation filter is
employed after this extended block is scaled for temporal
prediction in transform domain. The prediction coefficients,
conditioned on the sub-pixel location, are designed to min-
imize the final prediction error in the current block, using
a two loop ACL design approach similar to [4]. Note that
the EB-TDTP is beneficial even for motion compensated
references at full-pixel locations where interpolation filters
are not applied, as it allows fully exploiting spatial correla-
tions around reference block boundary. Evaluation results
demonstrate the proposed technique’s reasonable gains over
regular TDTP, which overall results in substantial perfor-
mance improvements over standard HEVC. Our proposed
disentanglement of TDTP and sub-pixel interpolation, also
paves a path for future research on joint optimization of these
modules for further performance improvements.

Other related work includes multi-tap pixel-domain filter-
ing approaches [5, 6, 7] to account for spatial correlation in
inter prediction. However, these techniques neglect the vari-
ation in temporal correlation across frequencies. In [8, 9],
motion-compensated three-dimensional subband coding ap-
proaches is proposed to overcome similar challenges, but is
limited by complexity and delay overhead. In [10], a sub-
pixel interpolation in DCT domain is proposed, but this ne-
glects the spatial correlation across block boundaries.

2. BACKGROUND

We assume the DCT coefficients of blocks along a motion
trajectory form a first-order AR process per frequency. Let’s
denote by xn, the DCT coefficients at a particular frequency,
of blocks along a motion trajectory. The AR process can now
be given as,

xn = ρxn−1 + zn, (1)

where, ρ is the transform domain correlation coefficient, and
zn is the innovation. The optimal TDTP predictor for each

Fig. 2. Extended reference block with neighboring pixels

frequency coefficient is,

x̃n = ρx̂n−1, (2)

where x̂n−1 is the reconstructed DCT coefficient. The op-
timal prediction coefficient ρ, which minimizes the mean
squared prediction error, is given as,

ρ =
E(xnx̂n−1)

E(x̂2n−1)
. (3)

This forms the basic TDTP paradigm proposed in [2].

3. TRANSFORM DOMAIN TEMPORAL
PREDICTION WITH EXTENDED BLOCKS

The basic TDTP described in Sec. 2 exploits the spatial cor-
relation and temporal correlation between the motion com-
pensated reference block and the current block. However, the
spatial correlation with neighboring pixels outside the block
is neglected. Here we propose EB-TDTP to incorporate all
the relevant information by employing the DCT on a larger
block, X, which is centered around the motion compensated
reference of current block, Y, and covers an extended region
in pixel domain, as shown in Fig. 2. The current block and the
extended block are of sizeB1×B1 andB2×B2, respectively,
with B2 > B1. B2 is chosen such that all the pixels required
for sub-pixel interpolation of reference block lies within X.
The vertical and horizontal interpolation filters in the matrix
form are denoted as F1 and F2, which are of sizeB1×B2 and
B2 × B1, respectively. Therefore, the interpolated reference
block is F1XF2. The matrix operator of vertical 1D-DCT
of size b is denoted as Db. We also define the operator ◦ as
element-by-element multiplication.

The traditional temporal prediction is the same as the in-
terpolated reference block, i.e.,

Ỹ = F1XF2. (4)

The TDTP of Y as proposed in [2] can be formulated as,

Ỹ = D′B1
((DB1

F1XF2D
′
B1

) ◦PB1
)DB1

, (5)
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Fig. 3. Block diagram of the proposed TDTP framework employing extended blocks

where Pb is a b × b matrix with elements as the temporal
prediction coefficients, ρ, corresponding to each frequency.

The block diagram of EB-TDTP is shown in Fig. 3. First
the extended block is converted to DCT domain to achieve
spatial decorrelation, then the prediction coefficients PB2

are
applied to the DCT domain prediction per frequency using
(2), and finally the prediction is converted back to pixel do-
main for sub-pixel interpolation. The prediction coefficients
PB2 are designed to minimize the overall prediction error
J = ||Y − Ỹ||2, to fully account for the sub-pixel interpo-
lation effect. Therefore, the EB-TDTP can be formulated as,

Ỹ = F1D
′
B2

((DB2
XD′B2

) ◦PB2
)DB2

F2. (6)

To design the prediction coefficients PB2
, let us set H1 =

F1D
′
B2

, H2 = DB2F2, and XT = DB2XD′B2
, to simplify

the cost as,

J = ||Y −H1(XT ◦PB2
)H2||2

∝
B1∑

m=1

B1∑
n=1

[
Y(m,n)−

B2∑
i=1

B2∑
j=1

PB2(i, j)XT (i, j)H1(m, i)H2(j, n)
]2

(7)

This is equivalent to the least square estimation problem of
minimizing ||ApB2

− b||2, where pB2
is the vector form (of

sizeB2
2×1) of PB2

, A and b (of size ofB2
1×B2

2 andB2
1×1)

are quantities derived from the training data as,

A(k, l) = XT (i, j)H1(m, i)H2(j, n), (8)
b(k) = Y(m,n), (9)

where, k = mB1 + n (m,n = 0 . . . B1 − 1), and l = iB2 +
j (i, j = 0 . . . B2 − 1). The optimal solution for prediction
coefficients is given as,

pB2
= (ATA)−1ATb, (10)

PB2
(i, j) = ρi,j = pB2

(l). (11)

Estimating these coefficients in a conventional off-line
closed-loop technique, suffers from the design instability

Fig. 4. The instability problem in closed-loop predictor de-
sign

problem, which is illustrated in Fig. 4. A set of prediction
coefficients, PB2

, are designed to match the statistics of given
reconstructed reference blocks, which includes the red block
in frame 1 and the blue block in frame 2 (which are references
for the red block in frame 2 and the blue block in frame 3,
respectively). However, as we employ PB2

in closed-loop,
the reconstructed reference frames are updated, as seen in the
shaded region of the blue block in frame 2, which implies
the blue block in frame 3 is predicted from a reference for
which the optimal predictor P′B2

differs from the designed
predictor PB2

. This mismatch in statistics between design
and operation grows over time as the data is fed through the
prediction loop, leading to substantial ineffectiveness of the
designed prediction parameters.

Therefore, to overcome this design instability, we employ
a two loop asymptotic closed-loop (ACL) approach similar to
[4], where, in the inner loop we fix the encoder decisions, and
optimize the predictor PB2

to minimize prediction error J via
the ACL approach, and in the outer loop encoder decisions
are updated with PB2

fixed to optimize the rate-distortion
(RD) cost in closed-loop (for a more formal and detailed de-
scription of the ACL approach see [4]). The mismatch in op-
timization criteria of the two loops eliminates convergence
guarantee of the outer loop. Thus, in a deviation from [4] to
achieve better overall RD performance, we compare the RD
cost achieved at every iteration of the outer loop and select
the prediction parameters of the outer loop iteration, which
resulted in the minimum RD cost.

Note that ρi,j in our framework is not strictly the tempo-
ral correlation coefficient per frequency any more, although
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we observed it to be similar to temporal correlation in the
low frequencies. These coefficients differ from the coeffi-
cients of basic TDTP to effectively account for the spatial cor-
relation with pixels neighboring the reference block bound-
ary. This also differentiates our framework from simply em-
ploying a larger inter-prediction block at the encoder. Al-
though the TDTP and the interpolation filter interfere with
each other, they can not be completely replaced by each other,
since element-wise multiplication of TDTP is not equivalent
to matrix multiplication of interpolation. However, the pro-
posed framework paves a path for further performance im-
provement via joint design of TDTP and interpolation, which
will be one of our future research directions.

4. EXPERIMENTAL RESULTS

To evaluate the performance, the proposed EB-TDTP is im-
plemented in HM 14.0, and is compared to standard HEVC
and HEVC with basic TDTP. To simplify the experiments, all
the sequences are coded in IPPP format, only previous frame
is allowed as reference, motion search is allowed only up
to half-pixel precision, both prediction and transform block
sizes are restricted to 8 × 8, and the sample adaptive offset
function option is disabled. We evaluate the full potential of
EB-TDTP by designing a specific set of coefficients for each
sequence using the training method described above. Each
sequence is tested at various bitrates with QP ranging from
22 to 37. Preliminary results in BD-rate improvement [11]
of employing EB-TDTP is provided in Table 2, with up to
2.4% extra average bitrate reduction over basic TDTP, and
up to 12.9% bitrate reduction over standard HEVC. The RD
curve for sequence coastguard is shown in Fig. 5, with up to
0.75 dB PSNR improvements over standard HEVC. These re-
sults already demonstrate the utility of the proposed technique
with consistent and reasonable gains over regular TDTP, and
substantial performance improvements over standard HEVC,
with reasonable complexity increase due to the extra DCT and
inverse DCT. Moreover, the results also show the potential for
substantial performance improvement that can be achieved
with joint optimization of EB-TDTP and interpolation within
the proposed framework.

5. CONCLUSION

This paper substantially extends the transform domain tem-
poral prediction approach for video coding to fully account
for the interference with sub-pixel interpolation filter, and the
spatial correlations outside the reference block boundary, by
completely disentangling the spatial and temporal correla-
tions. Our proposed framework also paves a path for joint
optimization of TDTP and interpolation. Experimental re-
sults demonstrate the effectiveness of the proposed technique
with substantial gains over standard HEVC.

Sequence
Bit rate

reduction (%)
(TDTP)

Bit rate
reduction (%)
(EB-TDTP)

Coastguard (CIF) 8.69 10.61
Mobile (CIF) 11.91 12.91

Highway (CIF) 3.05 5.44
Bus (CIF) 5.95 6.70

Waterfall (CIF) 9.88 10.16
Tempete (CIF) 5.78 6.19

RaceHorse (416x240) 3.48 4.32

Table 2. Reduction in bitrate over reference encoder by em-
ploying TDTP and EB-TDTP

Fig. 5. Coding performance comparison for sequence coast-
guard at CIF resolution
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