
NOVEL 3D-WPP ALGORITHMS FOR PARALLEL HEVC ENCODING

Ziyu Wen?, Bichuan Guo?, Jiashuo Liu?, Jisheng Li?, Yao Lu†, Jiangtao Wen?

?Tsinghua University †University of California, San Diego

ABSTRACT

Although wavefront parallel processing (WPP) proposed in the
HEVC standard and various inter frame WPP algorithms can achieve
comparatively high parallelism, their scalability for its parallelism is
still very limited due to various dependencies introduced in spatial
and temporal prediction in HEVC. In this paper, we propose three
types of 3 Dimensional WPP (3D-WPP) algorithms that can signif-
icantly improve the parallelism, while achieving good tradeoffs be-
tween implementation complexity, determinism, and rate-distortion
(RD) performance. Experimental results show that the proposed al-
gorithms can lead to up to 2.8x speed up compared with existing in-
ter frame WPP methods. While the Simple 3D-WPP and Static 3D-
WPP algorithm may introduce an BD rate loss between 0 to 4.9% as
compared with existing algorithms, the more complex Dynamic 3D-
WPP algorithm achieves better parallelism with virtually no coding
performance loss.

Index Terms— HEVC, 3D-WPP, Wavefront Parallel Processing

1. INTRODUCTION

The High Efficiency Video Coding (HEVC) standard developed by
the Joint Collaborative Team on Video Coding (JCT-VC) can achieve
50% bitrate savings as compared with H.264/AVC [1] [2]. Due to its
high computational complexity, parallel processing for HEVC is es-
pecially important. Several parallel processing friendly tools, such
as tiles and wavefront parallel processing (WPP) were introduced.
Among these, WPP has been reported to achieve a good tradeoff be-
tween parallelism and coding performance [3]. Later, several inter-
frame WPP methods were introduced to further improve the paral-
lelism scalability [3][4][5]. However, the actual parallelism achieved
by the existing methods is still quite limited, e.g. 13 for 1080p video
and 7 for 720p video in our experiment.

In this paper, we propose an inter frame WPP framework named
3-Dimensional WPP (3D-WPP), where the delay of the wavefronts
between frames may be Largest Coding Units (CTUs) rather than in
rows. This leads to a truly 3 dimensional (time, x, y) wavefront of
concurrently running CTUs and a large increase in parallelism. The
main contribution of this paper are:

1) We proposed Simple 3D-WPP and Static 3D-WPP algorithm
with significant speed-ups and limited RD (rate-distortion) loss com-
pared to the existing algorithms.

2) We analyzed the RD performance of the existing inter frame
WPP algorithms and proposed a Dynamic 3D-WPP that archives su-
perior performances in both the speed and quality aspects.

Email: {wen-zy13, gbc11, liujs13, lijs12}@mails.tsinghua.edu.cn,
luyao@ucsd.edu, jtwen@tsinghua.edu.cn. This work is supported by the
National Science Fund for Distinguished Young Scholars of China (Grant
No. 61125102), the State Key Program of National Natural Science of China
(Grant No. 61133008) and Nanjing Yunyan Information Technology Ltd.

3) We analyzed the in-loop deblocking and SAO (Sample Adap-
tive Offset) filters in inter frame WPP, and proposed a compatible
method with 3D-WPP.

The paper is organized as the follows. In Section 2, we briefly
review approaches for parallel processing in HEVC and H.264/AVC
encoding. 3D-WPP is described in Section 3, including simple,
static and dynamic algorithms as well as in-loop filters. Section 4
contains the experimental results, while Section 5 is the conclusions.

2. BACKGROUND

2.1. Wavefront parallel processing (WPP)

In wavefront parallel processing of HEVC [6], the encoding of a
largest coding unit (CTU) is only dependent on the reconstructed
CTU on its top-right, and its previous CTU. In the CTU level, by
initializing the context model for each line, and getting the prediction
information from the top-right CTU, each CTU can start encoding
immediately after its top-right CTU is encoded, forming a wavefront
of CTUs that can be processed in parallel. Compared with slices and
tiles, the absence of a hard boundary in WPP leads to significant RD
performance improvement while maintaining good parallelism [3].

In reality, the actual encoding time of each CTU by different
processing units is highly unbalanced, as shown in Fig. 2 for a 1080p
frame. As a result, the theoretical limits of WPP parallelism can
hardly be reached in practical systems.

2.2. Related Work

For H.264/AVC, Zhao et al. proposed a wavefront parallel encoding
method in [7] and [8]. A similar implementation of this approach is
included in the x264 [9] open source H.264 encoder. Finchelstein
et al.[10] examined multicore and larger reference area for H.264
decoding. Azevedo and Meenderinck et al.[11][12] introduced in-
ter frame wavefront for H.264 decoding as well as an analysis of
various parallel approaches in H.264/AVC. Zhao et al.[13] described
a coding unit (CU) level parallel approach for HEVC intra encod-
ing, while Shen and Chen et al.[14][15] introduced a fast H.264
to HEVC transcoder with wavefront parallelism. Chi et al.[3] thor-
oughly examined the parallel scalabilities and efficiencies of differ-
ent HEVC parallelization approaches, and proposed a inter-frame
wavefront method named Overlapped WaveFront (OWF), mainly
from a decoder’s perspective. Chen et al.[4] extended OWF to a
method named Inter-Frame Wavefront (IFW) by introducing multi-
ple B frames in the inter frame parallelism pipeline, while SAO is
disabled. The open source x265 encoder [5] implements the inter-
frame wavefront parallelism inherited from x264[9]. However, our
experiments show that both [4] and [5] suffer from limited parallel
scalability.

1471978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



2.3. OWF and IFW

In this section, we briefly introduce the existing wavefront parallel
algorithms, including (intra frame) WPP, OWF [3], and IFW [4]. In
this paper, IFW refers to the algorithm in [4], while inter frame WPP
is used in contrast to intra frame WPP.

WPP, OWF, IFW and our proposed methods in later section
share the same reference and dependency map for intra prediction.
So here we only discuss the reference and dependency for inter pre-
dictions. Ci,j,k represents the k-th CTU in j-th line of i-th frame in
encoding order (i, j, and k start from 0). RefF (Ci,j,k) is the reference
area for inter prediction of Ci,j,k using method F. Therefore,

RefWPP(Ci,j,k) = {Ci′,j′,k′ |
0 ≤ i′ < i, 0 ≤ j′ < H, 0 ≤ k′ < W}

(1)

RefOWF(Ci,j,k) = {Ci′,j′,k′ |
i′ = i− 1, 0 ≤ j′ ≤ j + LH , 0 ≤ k′ < W}

(2)

RefIFW(Ci,j,k) = {Ci′,j′,k′ |
i′ ∈ RefList(i), 0 ≤ j′ ≤ j + LH , 0 ≤ k′ < W}

(3)

where W and H are the frame width and height in CTU, and Re-
fList(i) is the set of reference frames for frame i. LH is small non-
negative integer parameter representing a safe range, which is about
1/4 frame height in CTU in OWF, and is set as small as 0 or 1 in
IFW.

According to the reference area, we can find the dependent set
DepF (Ci,j,k) for inter prediction of Ci,j,k after transitive reduction:

DepWPP(Ci,j,k) = {Ci−1,H−1,W−1} (4)

DepOWF(Ci,j,k) = {Ci−1,j+LH ,W−1} (5)

DepIFW(Ci,j,k) = {Ci′,j+LH ,W−1|i′ ∈ RefList(i)} (6)

The open source project x265[5] has a similar mechanism as
IFW.

3. 3D WAVEFRONT PARALLEL PROCESSING

In this section, we will introduce the highly paralleled 3D-WPP algo-
rithms, with compatible in-loop deblock and SAO filters. The Sim-
ple 3D-WPP is easier to implement. The Static 3D-WPP extends the
reference area and hence improves the RD performance while keep-
ing the process deterministic. Finally, the Dynamic 3D-WPP com-
pensates for almost all the RD losses introduced by 3D parallelism
and is optimal in both speed and quality.

3.1. Dependency of 3D-WPP

The existing methods, namely OWF and IWF, settle the refer-
ence and dependency in rows. For example, DepOWF,IWF(Ci,0,0) =
{Ci′,LH ,W−1}, which means the encoding process of frame i can
only be started after the reconstruction of Ci′,LH ,W−1, when al-
most half of the frame i′ has been reconstructed in WPP pattern.
However, CTUs near Ci′,LH ,W−1 cannot be referenced by Ci,0,0.
So such reference and dependency are not only redundant but also
reduce the parallelism.

DepSim3D(Ci,j,k) = DepSta3D(Ci,j,k) = DepDyn3D(Ci,j,k)

= {Ci′,j+LH ,k+LW
|i′ ∈ RefList(i)}

(7)

The dependency set of 3D-WPP is given in Eq.7. In 3D-WPP,
Ci,j,k can start encoding right after Ci′,j+LH ,k+LW

is recon-
structed, where LH and LW are small non-negative integers indi-
cating the safe area. The reduction of redundant dependency results
in significant improvement in parallelism.

3.2. Simple 3D-WPP

Our proposed Simple 3D-WPP algorithm achieves significantly
larger parallelism than the existing algorithm. Using Simple 3D-
WPP, the reference area is simply restricted in a rectangular area
given in Eq. 8, which is easy and simple to implement.

RefSim3D(Ci,j,k) = {Ci′,j′,k′ |i′ ∈ RefList(i),

0 ≤ j′ ≤ j + LH , 0 ≤ k′ ≤ k + LW }
(8)

Fig.1 shows the dependency and reference of previous algo-
rithms and 3D-WPP. For simplicity, we only demonstrate a reference
frame pair (Ref(erence), Cur(rent)), which could be (I, P), (I, B), (P,
P), (P, B) or (B, B). An arrow A→ B indicates that CTU B depends
on CTU A. The reference area of Simple 3D-WPP can be repre-
sented as Area 1. We can see in the figure that, given the same Ref,
compared to previous algorithms, the Cur of 3D-WPP can not only
have more CTUs to process, but also enable other frames referencing
Cur to start encoding, both of which improve the parallelism.

3.3. Static 3D-WPP

In Static 3D-WPP, all the CTUs which are guaranteed to be recon-
structed when Ci′,j+LH ,k+LW

is done, can be referenced by Ci,j,k,
as described in Eq. 9. Note that the RefSta3D(Ci,j,k) is the largest
possible reference area to be reconstructed deterministically.

RefSta3D(Ci,j,k) = {Ci′,j′,k′ |i′ ∈ RefList(i),

0 ≤ j′ ≤ j + LH , 0 ≤ k′ < W,

2k′ − j′ ≥ 2k + 2LW − j − LH}
(9)

In Fig.1, compared to Simple 3D-WPP, Area 2 is the additional
reference area utilized by Static 3D-WPP. Such enlarged reference
area contributes to RD performance gain, while introducing imple-
mentation complexity.

While implementing the restriction of reference area in HEVC,
motion vectors (MV) in the Advanced Motion Vector Prediction
(AMVP) mode should be clipped into the reference area, and Merge
Candidates who have MVs out of the reference area should be dis-
carded. It is desirable to check more merge candidates, in case some
of them are discarded due to 3D-WPP.

It is also important to set earlier frames in encoding order and
upper rows in one frame with higher priority, to maximize the paral-
lelism.

3.4. Dynamic 3D-WPP

While the Simple and Static 3D-WPPs have exploited the parallelism
in the dependency map, the reference area can be dynamically en-
larged using the algorithm in this subsection to further improve RD
performance.

RefDyn3D(Ci,j,k) = {Ci′,j′,k′ |Ci′,j′,k′ is reconstructed}
= RefSta3D(Ci,j,k) ∪ {Ci′,j′,k′ |Ci′,j′,k′ ∈ Aera3}

(10)

1472



Reference Current

Reconstructed

Processing

Not Reconstructed

Area1 Area2

Area3

Area4

Ci,j,k

Ci',j,k

Previous Method

3D-WPP

Fig. 1. Dependency and reference of previous method (upper) and 3D-WPP (bottom)

0

50

20 30

E
n

c
o

d
in

g
 T

im
e

/m
s

100

20

Y/LCU X/LCU

10 10
0 0

Fig. 2. Encoding Time of CTUs

a

abcc

cd

 1 2 3 4 5

1

2

3

4

5

Fig. 3. Deblock Filter and SAO

As in Eq.10, when encoding Ci,j,k, all the CTUs which are re-
constructed can be referenced. As shown in Fig.1, the Area 3 is the
additional reference area utilized by Dynamic 3D-WPP. The bound-
ary between Area 3 and Area 4 changes dynamically. Area 3 exists
when 1) the encoding time of each CTU is unbalanced, as is usually
the case; and 2) when the parallelism the encoder achieves exceeds
the number of cores of the machine, which is content dependent.

The core idea of Dynamic 3D-WPP is to turn the inevitable par-
allelism loss from unbalanced CTU time and the surplus parallelism
in a finite-core machine into RD performance gain. Such optimiza-
tion is very useful when encoding speed is of higher priority than
quality, such as in the real-time encoding scenario.

Experiments in the later section shows that even a small slice
of Area 3 may contribute a lot to the RD performance. And since
checking whether Ci′,j′,k′ is reconstructed does not require a mutex
lock, no multi-threading overhead is introduced in this mechanism.

Algorithm 1 3D-WPP with In-Loop Filter
for Each Ci,j,k do

for Each i′ ∈ RefList(i) do
wait until Ci′,j+LH ,k+LW

is reconstructed
end for
encode Ci,j,k

deblock Ci,j−1,k (vertical), Ci,j−1,k−1 (horizontal)
compute SAO parameters for Ci,j−1,k−1

apply SAO filter, extend CTU border for Ci,j−2,k−2

mark Ci,j−2,k−2 as reconstructed and issue signal
if k = W − 1 or j = H − 1 then

do filter for the remaining CTUs in the row or colomn
mark and issue signal

end if
end for

3.5. In-Loop Filters

In [5], the encoder has to wait for all CTUs in a row to be encoded
before applying the deblocking filter, and the SAO filter introduces
another full row of delay. In [4], SAO is disabled to reduce delay.

As shown in Algorithm 1, instead of applying row filters to row
j, 3D-WPP applies CTU filters to each CTU Ci,j,k. A vertical de-
blocking filter is applied first, followed by a horizontal deblock-
ing filter after one column delay. Since HEVC’s deblocking deci-
sions are made based on a four-sample segment between adjacent
blocks, we need adjacent blocks to be encoded beforehand to apply
the deblock filter. Specifically, we deblock Ci,j−1,k vertically and
Ci,j−1,k−1 horizontally right after encoding Ci,j,k.

After horizontally deblocking a CTU, the encoder computes its
SAO parameters and applies it. A few bottom rows and rightmost
columns of the CTU are excluded in SAO parameter computation,
since their pixels won’t be decided until adjacent CTUs are de-
blocked. This further reduces the row/column delay in the sense
that we can compute a CTU’s SAO parameters as soon as itself is
deblocked. However, since it requires all deblocked pixels to apply
the SAO filter, the previous exclusion method can not be used for
SAO filter application, resulting in a higher delay comparing to SAO
computation.

The processes are pipelined according to their row delays and
column delays. Each row uses its own entropy coder for SAO RD
cost optimization, working in a similar pattern as wavefronts.

For example, as in Fig.3, when Ci,4,4 finishes its encoding,
Ci,3,5 have also been encoded (marked as a). Therefore we can
apply the vertical deblocking filter to Ci,3,4 (marked as b), and
the horizontal deblocking filter to Ci,3,3. This means CTUs above
Ci,3,3 (e.g. Ci,2,3) or on its left side (e.g. Ci,3,2) have also been
deblocked (marked as c). As explained above, we can compute their
SAO parameters. One more row and column delay are added for
applying the SAO filters, marked as d in the figure.

1473



Table 1. BD rate (%) compared with previous method

Frame Type Size Video Prev1 Sim1 Sta1 Dyn1 Prev2 Sim2 Sta2 Dyn2

IPPPPP

2160p Cobra 0.00 0.08 0.06 -0.03 -0.10 -0.10 -0.10 -0.11
2160p Suzie 0.00 1.54 0.91 -0.11 -0.40 -0.35 -0.39 -0.40
1080p Tennis 0.00 1.26 0.86 0.31 -0.07 0.41 0.38 0.39
1080p RedKayak 0.00 0.08 0.07 0.05 -0.02 0.03 0.03 0.03

720p DucksTakeOff 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
720p Parkrun 0.00 0.08 0.08 0.08 0.00 0.08 0.08 0.08

IBBBBP

2160p Cobra 0.00 4.92 3.67 1.19 -1.67 2.17 0.37 -0.27
2160p Suzie 0.00 3.14 1.93 -0.47 -1.50 -0.30 -0.59 -1.51
1080p Tennis 0.00 2.37 1.74 0.16 -0.97 -0.51 -0.47 -0.79
1080p RedKayak 0.00 0.35 0.35 -0.09 -0.20 -0.15 -0.15 -0.22

720p DucksTakeOff 0.00 0.01 0.01 0.02 -0.01 0.01 0.01 0.01
720p Parkrun 0.00 0.15 0.15 0.16 0.00 0.16 0.16 0.16

Table 2. Speed-up ratio (x) of previous method and 3D-WPP

Frame Type Size Video Prev1 Sim1 Sta1 Dyn1 Prev2 Sim2 Sta2 Dyn2 Dyn1/Prev1

IPPPPP

2160p Cobra 18.81 32.20 32.19 31.92 17.64 31.89 31.88 31.67 1.70
2160p Suzie 16.85 29.50 29.29 29.47 15.31 29.00 29.18 29.07 1.75
1080p Tennis 10.14 23.01 23.01 22.69 9.54 18.92 18.93 18.64 2.24
1080p RedKayak 9.95 24.64 24.72 24.47 9.40 20.55 20.47 20.28 2.46

720p DucksTakeOff 6.01 12.75 12.74 12.67 5.68 10.47 10.44 10.38 2.11
720p Parkrun 6.18 13.05 13.07 12.99 5.88 10.79 10.76 10.71 2.10

IBBBBP

2160p Cobra 29.71 32.06 31.96 31.65 28.50 31.90 31.98 31.68 1.07
2160p Suzie 27.69 30.04 29.60 29.90 25.95 29.96 30.33 29.92 1.08
1080p Tennis 13.36 28.61 28.32 28.39 12.72 27.85 27.76 27.45 2.13
1080p RedKayak 13.29 30.56 30.52 30.15 12.77 29.81 29.77 29.32 2.27

720p DucksTakeOff 7.98 18.57 18.58 18.43 7.56 15.65 15.74 15.57 2.31
720p Parkrun 7.10 20.06 20.12 19.96 6.75 16.87 16.86 16.73 2.81

We have shown that the deblock and SAO filter and can be re-
duced from row level to CTU level, and applied in 3D-WPP pattern.
Options like applying SAO with pixels before deblock filter can fur-
ther reduce the delay, at the cost of RD loss.

4. EXPERIMENTS

Since it is difficult to implement inter frame WPP on the HEVC Test
Model (HM) [16] which has a fixed GOP structure without frame
level parallelism, we have implemented 3D-WPP on x265[5] v1.4.
The Intra period was set to 120, the CTU size was 64. The encodings
were conducted using the medium preset, with QPs {22, 27, 32, 37}.
The experiments was conducted on a 36-core (2 x Intel Xeon E5-
2699 v3 @ 2.30GHz, hyper-threading off) server with 128GB RAM.

Table 2 shows the speed up ratio compared to a single thread
run of the previous methods. The index Prev denotes the previous
algorithms, either IFW or the x265 pattern. The index Sim, Sta and
Dyn denotes Simple, Static and Dynamic 3D-WPP respectively. The
index x in Prevx or Dynx denotes LH = x in IFW or LH = LW = x
in 3D-WPP.

In the experiment, 3D-WPP achieved up to 1.7x speed-up for
4k, 2.4x for 1080p and 2.8x speed-up for 720p video compared with
previous algorithms. For 4k video, the overall speed-up ratio was
almost identical to the number of cores of our machine. The three
methods of 3D-WPP achieved almost the same parallelism, while
increasing LH and LW slightly reduced the parallelism.

Table 1 shows the RD loss of existing algorithms and 3D-WPP.

In most cases, Simple and Static 3D-WPP have good RD perfor-
mance compared with previous method. When they do not, the Dy-
namic 3D-WPP made up up to 4% in BD rate loss of 3D-WPP, and
in some case had better RD performance than the previous algo-
rithms. In addition, increasing LH and LW by one, even in Prev
and Sim, could lead to significant RD improvement, which could
also be attributed to Area 3, where a small additional reference area
contributed significantly to the quality.

From the comparison with Prev1 and Dyn2, we can conclude
that the 3D-WPP has not only higher parallelism but also better RD
performance than the existing strategies.

5. CONCLUSIONS

In this paper, we proposed three 3D-WPP algorithms for parallel
HEVC encoding. Compared with the existing inter frame WPP tech-
niques like IFW and the x265 mechanism, the proposed algorithms
improve the level of parallelism with modest RD performance losses.

Experimental results show that 3D-WPP has up to 2.8x speed-
up compared to the previous algorithms. The Simple 3D-WPP is
easy to implement with good quality in most cases. The Static 3D-
WPP improves the RD performance while maintaining determinism.
And the Dynamic 3D-WPP is the best in both speed and quality,
compensating almost all the RD loss from 3D-parallelism.

Further optimizations of the 3D-WPP algorithms on multicore
system in terms of task scheduling, spatial and temporal locality,
cache misses, and etc. are also important.

1474



6. REFERENCES

[1] G.J. Sullivan, J.R. Ohm, W.J. Han, and T. Wiegand, “Overview
of the High Efficiency Video Coding (HEVC) Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
2012.

[2] J.R. Ohm, G.J. Sullivan, H. Schwarz, T.K. Tan, and T. Wie-
gand, “Comparison of the Coding Efficiency of Video Coding
Standards–Including High Efficiency Video Coding (HEVC),”
IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 2012.

[3] Chi Ching Chi, Mauricio Alvarez-Mesa, Ben Juurlink, Gor-
don Clare, Félix Henry, Stéphane Pateux, and Thomas Schierl,
“Parallel scalability and efficiency of HEVC parallelization ap-
proaches,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 22, no. 12, pp. 1827–1838, 2012.

[4] Keji Chen, Jun Sun, Yizhou Duan, and Zongming Guo, “A
novel wavefront-based high parallel solution for HEVC,” Cir-
cuits and Systems for Video Technology, IEEE Transactions on.

[5] “x265,” http://x265.org.
[6] F Henry and S Pateux, “Wavefront parallel processing,” Tech.

Rep., Tech. Rep. JCTVC-E196, 2011.
[7] Zhuo Zhao and Ping Liang, “A highly efficient parallel algo-

rithm for H. 264 video encoder,” in Acoustics, Speech and Sig-
nal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on. IEEE, 2006, vol. 5, pp. V–V.

[8] Zhuo Zhao and Ping Liang, “Data partition for wavefront par-
allelization of H. 264 video encoder,” in Circuits and Sys-
tems, 2006. ISCAS 2006. Proceedings. 2006 IEEE Interna-
tional Symposium on. IEEE, 2006, pp. 4–pp.

[9] “x264,” http://www.videolan.org/developers/
x264.html.

[10] Daniel F Finchelstein, Vivienne Sze, and Anantha P Chan-
drakasan, “Multicore processing and efficient on-chip caching
for H. 264 and future video decoders,” Circuits and Systems
for Video Technology, IEEE Transactions on, vol. 19, no. 11,
pp. 1704–1713, 2009.

[11] Arnaldo Azevedo, Ben Juurlink, Cor Meenderinck, An-
drei Terechko, Jan Hoogerbrugge, Mauricio Alvarez, Alex
Ramirez, and Mateo Valero, “A highly scalable parallel imple-
mentation of H. 264,” in Transactions on High-Performance
Embedded Architectures and Compilers IV, pp. 111–134.
Springer, 2011.

[12] Cor Meenderinck, Arnaldo Azevedo, Ben Juurlink, Mauri-
cio Alvarez Mesa, and Alex Ramirez, “Parallel scalability of
video decoders,” Journal of Signal Processing Systems, vol.
57, no. 2, pp. 173–194, 2009.

[13] Yanan Zhao, Li Song, Xiangwen Wang, Min Chen, and Jia
Wang, “Efficient realization of parallel HEVC intra encoding,”
in Multimedia and Expo Workshops (ICMEW), 2013 IEEE In-
ternational Conference on. IEEE, 2013, pp. 1–6.

[14] Tong Shen, Yao Lu, Ziyu Wen, Linxi Zou, Yucong Chen, and
Jiangtao Wen, “Ultra fast H. 264/AVC to HEVC transcoder,”
in Data Compression Conference (DCC), 2013. IEEE, 2013,
pp. 241–250.

[15] Yucong Chen, Ziyu Wen, Jiangtao Wen, Minhao Tang, and Pin
Tao, “Efficient software H.264/AVC to HEVC transcoding on
distributed multicore processors,” IEEE Trans. Circuits Syst.
Video Techn., vol. 25, no. 8, pp. 1423–1434, 2015.

[16] “HEVC Test Model (HM) ,” https://hevc.hhi.
fraunhofer.de/svn/svn_HEVCSoftware/.

1475


