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ABSTRACT

A video taken under the influence of atmospheric turbu-

lence suffers from serious distortion caused by the variation

of optical refractive index. In order to reduce geometric dis-

tortion and time-space-varying blur, and recover both coarse

structure and fine details, a novel turbulence extraction based

approach for recovering a latent image from an atmospheric

turbulence degraded imagery sequence is proposed. Firstly,

a non-rigid image registration method is applied as a prepro-

cessing to reduce geometric deformation. Secondly, the reg-

istered image sequence is decomposed into a low-rank back-

ground scene component and a sparse turbulent component

via matrix decomposition. Different from other approaches,

which intend to remove turbulence directly, we manage to ex-

tract information of distortion position from the sparse tur-

bulent component to indicate the sharpest turbulence patches.

The selected sharpest turbulence patches are then enhanced

and fused to generate an enhanced detail layer. Finally, the

output image is generated by fusing the deblurred background

scene layer and the enhanced detail layer together. Experi-

ments indicate that our approach is capable of significantly

alleviating atmospheric turbulence blur and geometric distor-

tion.

Index Terms— atmospheric turbulence, image restora-

tion, low-rank decomposition, guided filter.

1. INTRODUCTION

In long range imaging process, an image or video obtained is

often suffered from geometric distortion and blur caused by

atmospheric turbulence. Influenced by ambient air pressure,

temperature, humidity, carbon dioxide level and air dust den-

sity, atmospheric turbulence randomly alters the air refraction

index along the light transmission path [1] and hence causes

shimmering and distortion. Examples of such distortion could

be easily observed at positions where the temperature gradi-

ents are large, such as hot road surface, deserts, exhausts of

jet planes and objects above flame. As shown in Fig. 1, the

observed frame (Fig. 1 (a)) is severely deformed and blurred
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Fig. 1. A sample of atmospheric turbulence distortion. (a) An

observed frame, (b) Ground truth of the scene.

by atmospheric turbulence, compared with the ground truth

image (Fig. 1 (b)) [2].

In the situation that the scene and the camera are both

static, the imaging process with the degradation caused by at-

mospheric turbulence can be mathematically modeled as fol-

lows:

Fk(x) = Dk(Hk(J(x))) + nk(x), (1)

where k = 1, . . . , N is the frame number. F (x), D and H are

the observed image sequence, an operator which indicates the

geometric distortions caused by turbulence, and a blur ker-

nel, respectively. J(x) is the ideal error-free image of the

scene, which is not subject to blurring and distortion, n(x) is

an additive noise. The objective of turbulence mitigation is

to estimate J(x) from the observed degraded image sequence

Fk(x). However, turbulence mitigation is a challenging task

due to its ill-posed nature. Moreover, the amount of turbu-

lence varies both spatially and temporally.

Various approaches have been proposed to mitigate the

influence of atmospheric turbulence recent years[1, 2, 3, 4,

5, 6, 7, 8]. In [2], Hirsch et al. introduced a Efficient Fil-

ter Flow (EFF) technique by dividing each frame into sev-

eral isoplanatic regions and estimating the PSF separately for

each patch through a blind deconvolution algorithm. How-

ever, their method is suitable for low geometric distortion sit-

uation only and ringing artifacts still exist due to the limita-
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tion of local PSF estimation. In [8], Oreifej et al. proposed

to mitigate turbulence and detect moving object simultane-

ously for tracking objects. They decomposed the turbulence

sequence into three components: the background, the turbu-

lence and the object, with a three-term low-rank matrix de-

composition. However, their results are not directly compa-

rable to background subtraction or turbulence mitigation ap-

proaches. In [9], Anantrasirichai et al. proposed to alleviate

turbulence by region-level fusion based on the dual tree com-

plex wavelet transform. Their method was able to achieve

good performance due to both pre-processing (e.g., region

of interest alignment) and post-processing (e.g., contrast en-

hancement). In [5], Zhu et al. extended their previous restora-

tion framework [10] by reducing the variance of spatially and

temporally changing PSFs via non-parametric kernel regres-

sion. They firstly applied image registration to each frame

in order to remove geometric distortion. After that, a single

image with only space invariant near-diffraction-limited blur

was reconstructed via fusion process.

Though capable of reducing distortion and blur and recov-

ering coarse structure caused by turbulence, the approaches

mentioned above still have limitations on restoring fine de-

tails. In this paper we propose a novel approach based on

turbulence extraction for restoring a single clear image from

an observed image sequence degraded by atmospheric tur-

bulence, which is capable of restoring both coarse structure

(overall sharpness) and fine details simultaneously.

2. PROPOSED TURBULENCE EXTRACTION BASED

APPROACH FOR ATMOSPHERIC TURBULENCE

MITIGATION

As mentioned above that both the scene and the camera are

static, therefore, the corresponding part in each frame of the

observed sequence are linearly correlated to some degree.

Based on this rationale, the observed sequence can thus be

decomposed into a low-rank scene component and a sparse

turbulent component.

However, in the situation that the deformation is large,

the linear correlationship of the sequence matrix may be un-

available. In order to reduce the effect of the spatially and

temporally varying deformation, we first apply a B-spline

based non-rigid registration on the observed sequence as a

pre-processing. After that, in order to separate the static

scene object and the varying turbulence, we utilize a matrix

decomposition approach. We restore fine details from the ob-

tained sparse turbulent component using novel enhancement

and fusion methods. Meanwhile, we restore coarse struc-

ture information from the low rank scene component using

a blind deconvolution method. Finally, the restored image is

obtained by fuse the enhanced detail layer and the low rank

background scene together. Details of each step are described

in following subsections.

2.1. Image Registration

Since the linear correlationship of the sequence matrix may

be unavailable if the geometric deformation varies dramati-

cally. Image registration technique is first applied as a pre-

processing to suppress the geometric deformation.

The geometric deformation caused by turbulence can be

considered as a non-rigid transformation between each ob-

served frame and the scene [1]. Therefore, the turbulent de-

formation can be expressed using a non-rigid motion model

by manipulating an equally spaced control grid P overlaid on

a fixed reference image J . In [3], Zhu et al. introduced a more

natural symmetry constraint into the B-spline registration al-

gorithm based on the important property that the registration

should be symmetric or inverse consistent [11, 12]. In this

paper, we directly utilize the B-spline based registration tech-

nique proposed in [3] to generate the the registered sequence

{Rk}.

2.2. Turbulence Extraction

After the registration, according to the prior knowledge that

scene and camera are both static, the matrix of scene compo-

nent is assumed to be low-rank, and the differences of each

frame can be considered as sparse noise. Inspired by the ap-

proach described in [13], in order to extract these noise, we

apply rank minimization to decompose the registered image

sequence {Rk} into a fixed low rank background scene RL

and a set of sparse error {RS
k }. By stacking pixels of each

registered frames into a column vector, we can obtain a frame

matrix R = [vec{R1}, . . . , vec{RN}], where vec : Rw×h →
R

L denotes the stacking operator. The decomposition can be

modelled as:
{

min
B,S

Rank(B) s.t. R = B + S,

‖S‖F ≤ σ,
(2)

where S =
[

vec{RS
1
}, . . . , vec{RS

N}
]

is the sparse error ma-

trix, and B =
[

vec{RL
1
}, . . . , vec{RL

N}
]

is the low rank

background scene matrix. ‖•‖F is the Frobenius norm and

σ is a constant that represents the maximum total variance of

corrupted pixels across all images [14].

Since it is difficult to optimize (2) directly, we rewrite the

equation by applying a convex relaxation according to [15].

Consequently, the Lagrange form of (2) can be rewritten as

follows:

min
B,S

‖B‖
∗
+ γ ‖S‖

2

F s.t. R = B + S, (3)

where γ is a positive weighting parameter, ‖•‖
∗

is the nuclear

norm indicating the sum of all singular values.

The Augmented Lagrange Multiplier (ALM) algorithm

[14] is utilized in our paper to solve this problem. After ma-

trix decomposition, a fixed low-rank background scene image

sequence {RL
k } and a sparse noise sequence {RS

k } can be ex-

tracted from B and S, respectively.
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2.3. Fine Detail Restoration

In order to restore fine details, we propose a patch selection

and fusion based method. It is observed in the left image of

Fig. 2 that sequence {RS
k } contains position information of

distortions which could be utilized for distortion estimation.

Moreover, each frame in {RS
k } also contains local Gaussian-

like noise which could be removed by averaging process. The

image on the right of Fig. 2 shows the averaging result of

{RS
k }, which is denoted as R̄S(x). As shown in the figure,

although R̄S(x) is still blurry, it provides a good estimation

of positions where the scene was distorted by turbulence.

As mentioned in [16, 17], for short-exposure images, tur-

bulence creates random appearance of high quality regions.

In order to obtain these regions, we first create a binary image

from R̄S(x) using adaptive thresholding method. Denote the

binarized R̄S(x) as R̄BW (x) and local patches centred at each

1-valued pixel of R̄BW (x) as Ωi
BW , where i = 1, . . . ,M and

M is the total patch number. In this paper, we test with dif-

ferent patch sizes and finally set the patch size to 31 × 31
experimentally. In addition, we denote patches with the same

position of Ωi
BW in {Rk} as Ωi

k, where k = 1, . . . , N is the

frame index. Obviously, there would be M patches for each

frame in {Rk}.

In order to select the sharpest i-th patch, denoted as Ω̂i,

within N corresponding patches {Ωi
k|k = 1, ..., N}, we de-

tect local sharpness and similarity to the local patch mean for

each corresponding patch through all registered frames.

Fig. 3 illustrates the patch selection process. As shown

in the figure, the red rectangle box in the left frame shows a

patch Ωi
BW in R̄BW . In order to pick out the correspond-

ing patch with the best quality, we compare corresponding

patches {Ωi
k|k = 1, ..., N} in {Rk} and select the sharpest

patch as Ω̂i. Specifically, as shown in Fig. 3, patch in the k-th

frame is selected as Ω̂i.

With all M patches selected, we further fuse all selected

sharp patches Ω̂i together to generate a detail layer. However,

as R̄BW is not smooth and not aligned with object boundaries,

using corresponding patches in R̄BW as fusion weight map

directly may produce artifacts to the fused image. In addition,

details in Ω̂i also need to be enhanced. Inspired by [18], we

refine R̄BW and enhance Ω̂i using guided image filter.

In our approach, in order to obtain refined weighted

patches for detail fusion, a guided filter on each patch Ωi
BW

under the guidance of the corresponding sharpest patch of

registered image Ω̂i is applied as follows:

W i = HG(Ω
i
BW , Ω̂i), (4)

where W i is the output refined patch and HG denotes the

guided filtering operation.

In order to extract details from each patch, we further en-

hance each selected patch using guided filter. As an image

can be modelled as the combination of a smooth layer and a

detail layer, image details can be extracted by amplifying the

Fig. 2. Result of averaging the sparse turbulent. Left: one

frame of turbulent component. Right: averaged turbulent im-

age.

Fig. 3. Illustration of patch selection.

detail layer [19]. In our case, the smooth layer of patch Ω̂i

can be obtained using guided filter as follows:

Ω̂i
smooth = HG(Ω̂

i, Ω̂i), (5)

Therefore, details in each patch Ω̂i can be enhanced as fol-

lows:

Ω̂i
enhanced = Ω̂i

smooth + τ
(

Ω̂i − Ω̂i
smooth

)

, (6)

where τ is a coefficient to control the amplification level and

is set to 1.7 experimentally in this paper.

Finally, an enhanced detail layer is fused using weighted

averaging:

LD =

M
∑

i=1

W iΩ̂i
enhanced. (7)

2.4. Coarse Structure Restoration

In the last step, we apply single image blind deconvolution

on background scene RL(x) to suppress the blurring effect

caused by an unknown blur kernel and to restore the coarse

structure. Generally, degradation caused by blur can be de-

scribed as follows:

G = F ⊗ h+ n, (8)

where G and F are a blurred image and an unknown sharp

image, respectively. h represents the PSF and ⊗ indicates

convolution operation.
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We utilize a total variation (TV) based optimization al-

gorithm [20] in our study for deconvolution, which can be

described as follows:
〈

F̂ , ĥ
〉

= argmin
F,h

µ

2
‖F ⊗ h−G‖

2
+ ‖DF‖

1
, (9)

where µ is a regularization parameter, ‖DF‖
1

is TV norm.

Operator D is a collection of spatial sub-operators. After the

above problem is solved iteratively, the final output can be

obtained.

We further fuse the deblurred background scene and the

enhanced detail layer together using guided filter mentioned

above. We show the final results in Fig. 4.

3. EXPERIMENTAL RESULTS

In this section, we present the experimental validation of the

proposed restoration approach, with comparison with rep-

resentative state-of-art approaches: NDL [5], EFF [2] and

CLEAR [9]. We employ the video sequence chimney for

result comparison. The sequence consists of 100 frames and

exposure time for each frame is 1/250s. In addition, three

full reference image quality metrics, Peak signal to noise

ratio (PSNR), perception-based image model (PIM) [21] and

multi-scale structural similarity (MSSSIM) [22], are utilized

to quantitatively evaluate the performance of the comparison.

Table 1. Quantitative evaluation for Chimney (Fig. 4)

EFF CLEAR NDL Our’s

PSNR(dB) 34.46 35.86 35.24 36.05

PIM 35.32 35.71 35.57 35.81

MSSSIM 0.92 0.98 0.95 0.98

Fig. 4 shows the comparison results on Chimney . It is ob-

served that geometric deformation is effectively alleviated us-

ing each method. Specifically, it is observed in Fig. 4 (a) that,

compared with the ground truth image, the obtained frame is

severely distorted by turbulence. As observed in Fig. 4 (c),

EFF [2] is capable of recovering details faithfully. However,

it is noticed that halo artifacts appeared in edge regions. As

observed in Fig. 4 (d), result using CLEAR [9] is also visu-

ally satisfactory. It is also noticed that result using CLEAR

[9] has better contrast because of the contrast enhancement

process is applied. However, noise still exists in background.

As observed in Fig. 4 (e), NDL [5] produces sharp result

around structural areas. However, texture details are lost in

their result. As observed in Fig. 4 (f), our result also pro-

vides satisfactory restoration result. In addition, as shown in

the right-bottom corner of enlarged results corresponding to

the red rectangle of Fig. 4 (a), it is also observed that our

result has better performance on detail preservation, veins on

the chimney become visible.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 4. Comparison results with Chimney. (a) An observed

frame. (b) Ground truth. (c) EFF’s result [2]. (d) CLEAR’s

result [9]. (e) NDL’s result [5]. (f) Our result. (g) Enlarged

result of (b). (h) Enlarged result of (c). (i) Enlarged result of

(d). (j) Enlarged result of (e). (k) Enlarged result of (f).

Table 1 shows the quantitative evaluation on database

Chimney. It is observed that in Table 1, our approach has the

best quality index compared with EFF, CLEAR and NDL. It

is noticed that CLEAR also has the highest value of MSSSIM

due to the contrast enhancement as post processing.

4. CONCLUSION

In this paper, we present a novel approach for mitigating the

atmospheric turbulence caused degradation by extracting tur-

bulence component. We firstly applied a non-rigid registra-

tion method to correct geometric distortion from the observed

imagery sequence. After that, we decompose the registered

image sequence into a low-rank background scene image and

a sparse noise sequence. In addition, we select the sharpest

patch in registered images at position provided by averaging

the sparse noise sequence. Each sharp patch is then enhanced

and fused together to produce a enhanced detail layer using

guided image filter. After applying blind deconvolution to

background scene image, we fuse the deblurred background

scene and enhanced detail layer together to generate the final

output. Both qualitative and quantitative experimental results

demonstrate that our proposed approach can effectively re-

move the distortion and blur caused by turbulence.
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