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ABSTRACT
Hyper-spectral image fusion has been a hot topic in medical
imaging and remote sensing. This paper proposes a Bayesian
fusion model which combines the panchromatic (PAN) im-
age and the low spatial resolution hyper-spectral (HS) image
under the same framework. Sparsity constraint is introduced
as double “spike-and-slab” priors, and anisotropic Gaussian
noise is adopted for accuracy. To achieve reduction in compu-
tational complexity, we turn the anisotropic Gaussian distri-
bution into isotropic one with modified linear transformation
and propose a variational Bayesian expectation maximization
(EM) algorithm to calculate the result. Experiment results
show that our solution can achieve comparable performance
in pan-sharpening to other state-of-art algorithms while large-
ly reducing the computational complexity.

Index Terms— Hyper-spectral image fusion, sparse pri-
or, computational complexity, anisotropic Gaussian distribu-
tion, variational Bayesian algorithm

1. INTRODUCTION

Hyper-spectral image fusion, also called pan-sharpening [1,
2], aims at recovering a high spatial resolution hyper-spectral
image from a high spatial resolution panchromatic (PAN) im-
age and a low spatial resolution hyper-spectral (HS) image.
This technique has been a hot topic in recent years and it
compensates for the technical defect of hyper-spectral sen-
sors [3, 4], playing an important role in medical imaging,
geosciences and remote sensing, especially in some occasions
such as detection and material identification [1].

Recently, it is found that the high spatial resolution hyper-
spectral image could be pan-sharpened by matrix factoriza-
tion [3, 5]. Inspired by such finding, various methods were
proposed to enhance the performance of pan-sharpening [1,
3, 6, 7, 8, 9, 10], among which bayesian sparse representa-
tion of dictionary outstrips others in terms of recovery quality
with great success [4]. This Bayesian model divides the fu-
sion process into two stages where Markov chain Monte Car-
lo (MCMC) algorithm is used to figure out the pan-sharpened
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image. However, such method is computationally complex
because of long term sampling, and its convergence is hardly
guaranteed in finite steps [11]. What’s worse, solutions got
by the method proposed in [4] are still not global optima be-
cause of the separate processing on the PAN image and the
low spatial resolution hyper-spectral image.

In this paper, we first reformulate the Bayesian model of
the hyper-spectral image fusion with new mathematical ex-
pressions. Different from the work in [4], our model com-
bines two individual stages, the dictionary learning stage and
the sparse coding stage, which are formulated as probabili-
ty distributions under the same framework of Bayesian mod-
el. Based on mathematical analysis, double “spike-and-splab”
priors and anisotropic Gaussian noise distribution are intro-
duced to accurately describe the relationship between these
two kinds of images. This model is more likely to bring in
a global optimal solution, as the dictionary learning and the
sparse coding are processing on the PAN image and low s-
patial resolution image simultaneously. Second, we adop-
t variational Bayesian approximation method to reduce the
computational complexity [11]. Although this method intro-
duces loss in performance, it effectively avoids long sampling
time and the reconstruction quality can still be guaranteed by
the unique features of our model. Experiments show that the
result of our scheme is comparable in terms of reconstruc-
tion performance to other state-of-art algorithms, while large-
ly cutting down the computational cost. For images in CAVE
database, our algorithm can even run faster by 13.58 times
with promising recovery quality, compared to [4].

The paper is organized as follows. Section 2 formulates
our Bayesian model. Section 3 shows the detail of the varia-
tional Bayesian algorithm. Finally, the simulation results are
given in Section 4 and conclusion is drawn in Section 5.

2. BAYESIAN MODEL FORMULATION

Let the PAN image and the low spatial resolution hyper-
spectral image be denoted by Y ∈ Rl×MN and X ∈ RL×mn
respectively, wherein l and L denote their respective channel
numbers. MN and mn are their corresponding image sizes.
Then the pan-sharpened image denoted by Z ∈ RL×MN
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satisfies the following equations, as:

Y = FZ, and X = ZG

wherein F ∈ Rl×L denotes the spectral transform matrix and
G ∈ RMN×mn denotes the spatial transform matrix. Accord-
ing to the linear spectral mixture model [3], the pan-sharpened
image could be expressed as following:

Z = AT + N

wherein A is defined as a spectral dictionary and T is the
related sparse representation, with N denoting the residual.
We assume that the residual N is an isotropic Gaussian noise
as n(i,j) ∼ N (0, α−1

N ). Then the distributions of Y are as
following, wherein Y.i denotes the ith column of the matrix
Y.

Y|A,T ∼
MN∏
i=1

N (Y.i|FAT.i, α
−1
N FFT )

which is an anisotropic Gaussian distribution. To simplify the
computation, we transform Y into Ỹ = QY,wherein Q ∈
Rl×l, QTQ = (FFT )−1, and let F̃ = QF. Apparently, Q

could be easily yielded from SVD. For simplicity, we drop F̃
and Ỹ to F and Y, respectively, in the following part of this
paper. Then we have

Y|A,T ∼
MN∏
i=1

N (Y.i|FAT.i, α
−1
N Il)

As for the distribution of X, we only discuss the case that the
matrix G is unknown, given S = TG. To further simplify
the problem, we assume that S is independent from T and the
residual of NG is also an isotropic Gaussian noise. Thus the
distribution is:

X|A,S ∼
mn∏
j=1

N (X.j |AS.j , α
−1
X IL)

To depict the sparsity, we adopt the “spike-and-slab” pri-
ors for S and T [12]. Dictionary prior and hyper-parameter
conjugate prior are succeeded from the work [4]. Whereas in
this paper, we put these two sparse matrices under the same
Bayesian framework, which guarantees strict mathematical
logic. The priors are shown as follows, wherein ◦ denotes
Hadamard product [13].

A ∼
K∏
k=1

N (µAk0
, α−1

Ak0
IL)

S = W ◦Θ, Wi,j ∼ Bernoulli(βi), Θij ∼ N (0, α−1
Θ )

T = Π ◦B, Πi,j ∼ Bernoulli(γi), Bij ∼ N (0, α−1
B )

αX(αN, αΘ, αB) ∼ Gamma(aX(N,Θ,B), bX(N,Θ,B))

βi(γi) ∼ Beta(cβ(γ)/K, dβ(γ)(K − 1)/K)

Based on the assumption and the prior distribution above,
we could get the joint distribution of the hierarchical Bayesian
model.

p(X,Y,A,S,T, αX, αN)

= p(Y|A,T, αN)p(αN)p(X|A,S, αX)p(A)p(αX)

p(W|β)p(β)p(Θ|αΘ)p(Π|γ)p(γ)p(B|αB)p(αB)

3. VARIATIONAL ALGORITHM

Apparently, no closed solution exists for our Bayesian mod-
el introduced in Section 2. Thus approximation needs to be
made. Although MCMC could be used to figure out the pos-
teriori distribution of the model, such algorithm requires great
computational complexity because of the long term sampling
process that guaranteeing the convergence to the solution [11,
14]. To reduce the time consumption, we hereby propose a
variational Bayesian EM algorithm.

In our algorithm, the posteriori distribution is factorized
approximately, which is:

p(A,S,T, αX, αN|X,Y) ≈ q(Θ)q(W)q(B)q(Π)

K∏
k=1

q(A.k)q(αX)q(αN)q(αΘ)q(αB)

K∏
i=1

q(βi)

K∏
i=1

q(γi)

wherein q(.) denotes posterior approximation of the cor-
responding variable. Under the variational framework, we
iterate to minimize the Kullback-Leibler distance between
the posteriori distribution and the approximation distribution
[11]. Let P = {Θ,W,B,Π,A.k, αX, αN, αΘ, αB, βi, γi}.
For each pk ε P , the posterior approximation could be updat-
ed by the following equation, wherein < . >A denotes the
corresponding expectation under the distribution of A and
P \ pk denotes all variables in P except pk.

lnq(pk) =< lnp(A,S,T, αX, αN|X,Y) >P\pk
+const

3.1. Posterior Approximation of W and Π

According to the factorized joint distribution, the approximat-
ed posterior of W could be derived as following:

q(Wi,j = 1) ∝ exp{−1

2
[αXATA(i,i)(µ

2
Θi,j

+ ΣΘ.j(i,i))

−2αXµΘi,j
(A

T

.iX.j −ATA(i,(−i))S(−i),j)] + lnβi,j}
(1)

Wi,j =
q(Wi,j = 1)

q(Wi,j = 1) + exp(ln(1− βi,j))
(2)

where (.) denotes the statistical mean and A(−i)j denotes the
jth column of A except the ith row. Similar to W, Π has the
same type of distribution and can be obtained by replacing X,
S, A and αX with Y, T, FA and αN in eq.(1) and eq.(2),
respectively.
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3.2. Posterior Approximation of Θ and B

The distribution of Θ can be derived as a Gaussian distri-
bution, and its parameters are determined by the following
equation.

q(Θ) ∼
mn∏
j=1

N (µΘ.j ,Λ
−1
Θ.j

) (3)

µΘ.j
= αXΛ−1

Θ.j
diag(W.j)A

T
X.j

ΛΘ.j
= αXATA ◦W.jWT

.j + αΘIK

W.jWT
.j = W.jW

T

.j + diag[W.j ◦ (1−W.j)]

Additionally, ΘΘT and SST (BBT and TTT ) have to be
updated for other posterior approximations. As the posterior
approximation is similar to that of Θ, the distribution of B,
BBT and TTT can be obtained by substituting X, S, A, W,
αX and αΘ into Y, T, FA, Π, αN and αB, respectively.

3.3. Posterior Approximation of A.k

The posterior distribution of A is factorized into K factors,
A.k, k = 1, 2, ...,K, approximately. Each factor follows a
Gaussian distribution and their parameters could be obtained
as follows:

q(A.k) ∼ N (µA.k
,Λ−1

A.k
) (4)

ΛA.k
= (αXSST (k,k) + αAk0

)IL + αNTTT
(k,k)F

TF

µA.k
=Λ−1

A.k
{αX(XS

T

(k.) −A(−k)SST (−k),k)

+ αNFT(YT
T

(k.) − FA(−k)TTT
(−k),k)}

ATA and ATFTFA have to be updated for posterior ap-
proximation of Θ and W (B and Π). They could be easily
got based on the distribution of A.k. Due to the space limit,
this deriving procedure is not shown here.

3.4. Posterior Approximation of Hyper-parameters

As conjugate priors are adopted, all the posterior of hyper-
parameters will hold the same type of distribution form as
their corresponding prior. The approximations are as follows,
wherein tr(.) denotes the trace of the matrix.

q(αX) ∼ Gamma(aX +
Lmn

2
, bX +

1

2
[tr(XXT )

− 2tr(ASXT ) + tr(ATASST )])

(5)

q(αN) ∼ Gamma(aN +
lMN

2
, bN +

1

2
[tr(YYT )

− 2tr(FATYT ) + tr(ATFTFATTT )])

(6)

q(αΘ) ∼ Gamma(aΘ +
Kmn

2
, bΘ +

1

2
tr(ΘΘT )) (7)

Algorithm 1 Variational Bayesian Algorithm
Input: X,Y,K,Tstop
Initialize: the hyper-parameters aX, bX, aN, bN, aΘ, bΘ,
aB, bB, cβ , dβ , cγ , dγ and the parameters A, ATFTFA,
ATA, Π, W, t = 0
Output: Z = AT.
While t ≤ Tstop do

1. Update W (and Π) with the Eqs. (1)∼(2) if it is not
the first iteration.

2. Update Θ, ΘΘT , SST (and B, BBT , TTT ) with the
Eq. (3).

3. Update A, ATA, ATFTFA with the Eq. (4)

4. Update q(αX), q(αN), q(αΘ), q(αB), q(αβi
), q(αγi)

and αX, αN, αΘ, αB, βi, γi with Eqs. (5) ∼ (10)

5. t← t+ 1

End while

q(αB) ∼ Gamma(aB +
KMN

2
, bB +

1

2
tr(BBT )) (8)

q(βi) ∼ Beta(cβ +
mn∑
j=1

W(i,j), dβ +

mn∑
j=1

(1−W(i,j))) (9)

q(γi) ∼ Beta(cγ +
MN∑
j=1

Π(i,j), dγ +

MN∑
j=1

(1−Π(i,j))) (10)

Our algorithm is summarized in Algorithm 1. As W (and
Π) has to be updated based on the distributions of Θ (and B),
they will be initialized manually in the first iteration.

4. EXPERIMENT RESULTS

4.1. Experiment Setup

In our experiment, we first choose partial images from the
CAVE database [15]. In this database, images feature L = 31
spectral channel bands with size of 512×512. Thus, M =
N = 512. Images selected for test are typical scenes in nor-
mal life and almost have reconstruction performance compar-
ison in [8, 4, 9]. Then we get the low spatial resolution image
X by averaging the original image over 8×8 spatially disjoint
blocks and obtain the PAN image based on the Nikon D700
camera1. As the expectations of the dictionary A and the s-
parse representations are zero matrices, the low resolution im-
age will be centered statistically and its mean will compensate
for the final result to get the pan-sharpened image.

As for the model initialization, parameters aX, bX, aN,
bN, aΘ, bΘ, aB, bB, cβ , dβ , cγ and dγ are all set to 10−6.

1The data of spectral transform matrix F can be found at
http://www.maxmax.com/spectral response.htm
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Table 1. Algorithms performance comparison for partial images in CAVE database
XXXXXXXXXXAlgorithms

Image
Beers Beans Cloth Faces Hairs Paints Spools Statue Sushi Toys

Proposed method 1.8 5.3 3.5 1.1 1.3 3.7 4.4 1.0 2.0 4.8
BSR.[4] 2.1 4.8 4.0 1.9 2.2 3.2 4.6 1.4 2.9 4.0
GSOMP.[9] 2.2 6.1 4.0 2.2 2.1 6.9 5.0 2.1 3.2 5.1
ADMM.[8] - 4.2 9.5 3.4 2.3 4.5 5.3 4.3 - 3.0

The dimension dictionary of K and the iteration times Tstop
are fixed to 20 and 100, respectively. Elements of Π and W
are initialized to 0.5 while the dictionary is first set to the
result of Principal Components Analysis on X. We run our
experiment on Matlab with Intel Core 3.6GHz i7 CPU and
8GB RAM. Partial codes for updating Θ and B are written in
C-MEX to enhance the looping efficiency.

Table 2. Average time consumption comparison

Algorithms Proposed method BSR.[4]
Time 786.27sec.(13min.) 10680sec.(178min.)

4.2. Performance with Comparison

Fig.1 offers the reconstruction error distribution of the im-
age Chart & Toys in CAVE database [15]. In most areas, our
reconstructed images have nearly no difference with the orig-
inal images which are taken as ground truths. However, the
value of absolute error increases along edges or in some deli-
cate texture features, because pixels of these areas are largely
blurred in low spatial resolution image and the spectral infor-
mation is lost in the PAN image. Thus dictionary learning
could not record accurate spectral features in these areas.

The performance results are shown in Table1 and the
time consumption results are shown in Table 2 (The method
proposed in [4] is called BSR. in abbreviation). We adopt
root mean square error (RMSE) proposed in [8] to evaluate
the pan-sharpening performance. From these two tables, we
could find that our reconstruction performance is comparable
in RMSE to other state-of-art algorithms while largely re-
ducing the timing consumption by a factor of 13.58. In VBS
algorithm [4], MCMC method is adopted, which requires
long sampling times in each iteration (In [4], the sampling
times are 128). However, our algorithm replaces the sampling
process with single calculation of expectations. Although the
matrix inverse brings in computationally cost, it could be
simplified by Woodbury matrix identity [16]. Therefore, the
speed of our method is largely enhanced. In some cases, the
reconstruction performance of our algorithm is better than
others because our dictionary is learned in consideration of
the PAN image and the low spatial resolution image, which
reserves spectral information from the low spatial resolution

Fig. 1. Images reconstructed by our algorithm at 460, 550
and 640nm. Three rows of images are ground truths in CAVE
database, results of our algorithm and the error distribution,
respectively.

image and is more adaptive for the PAN image. In sum-
mary, our solution is promising for data fusion considering
computational complexity and reconstruction performance.

5. CONCLUSION

In this paper, we propose a Bayesian fusion model, which
formulates the PAN image and the low spatial resolution HS
image under the same Bayesian framework based on intro-
duced “spike-and-slab” sparse prior and anisotropic Gaussian
noise. To figure out the solution more efficiently, variational
Bayesian algorithm is introduced to approximate the expecta-
tion of results. Experiments prove that the dictionary learning
in consideration of two input images is more adaptive for im-
age reconstruction and our scheme achieves comparable per-
formance to other state-of-art algorithms while largely cutting
down the computational complexity. For images in CAVE
database, our algorithm can even run faster by up to 14 times
with promising performance.
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