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ABSTRACT

Full waveform inversion (FWI) delivers high-resolution im-
ages of a subsurface medium property by minimizing itera-
tively the misfit between observed and simulated seismic data,
and is commonly used by the oil and gas industry for geo-
physical exploration. FWI is a challenging problem because
seismic surveys cover ever larger areas of interest and collect
massive volumes of data. The dimensionality of the problem
and the heterogeneity of the medium both stress the need for
faster algorithms, so sparse regularization techniques can be
used to accelerate and improve imaging results.

In this paper, we propose a compressive sensing method
for the FWI problem by exploiting the sparsity of geologi-
cal model perturbations over learned dictionaries. Based on
stochastic approximations, the dictionaries are updated itera-
tively to adapt changing models during FWI iterations. Mean-
while, the dictionaries are kept orthonormal in order to main-
tain the corresponding transform in a fast and compact man-
ner so that these transforms do not introduce extra compu-
tational overhead to FWI. Establishing such a sparsity regu-
larization on the model enables us to significantly reduce the
workload by only collecting 0.625% of the field data without
introducing subsampling artifacts. Hence, the computational
burden of large-scale FWI problems can be greatly reduced.

Index Terms— sparse representation, dictionary learn-
ing, orthonormal basis, compressive sensing, full waveform
inversion

1. INTRODUCTION

Dictionary learning has now become a promising technique
for sparse signal representation and approximation. Com-
pared to traditional transforms such as wavelet, curvelet, etc.
with a predefined dictionary, dictionary learning based trans-
forms are better able to adapt to nonintuitive signal regular-
ities beyond piecewise smoothness. Numerical signal pro-
cessing tasks such as denoising [1, 2] and inpainting [3] have
benefited from the use of adaptive dictionaries that lead to
more sparse representations of high dimensional signals and
achieve state-of-the-art results. Such a technique has great

potential on seismic imaging problems such as full waveform
inversion (FWI) due to its continued demand on high dimen-
sional seismic data.

Recent overcomplete dictionary learning algorithms such
as K-SVD and its variants [4–6] train a dictionary D with
two steps: (1) sparse coding and (2) dictionary update. The
first step uses matching pursuit algorithms [7–9] to find the
sparse coefficients of the input training samples over the cur-
rent D by solving an `0-norm regularized minimization prob-
lem. The second step updates D by solving a gradient de-
scent problem using the known sparse coefficients. However,
the drawback of K-SVD algorithms is that they have to train
atoms in D sequentially with high computational complexity.
Such an issue can be bypassed by imposing orthonormality
on D [10], which yields an orthonormal dictionary learning
algorithm that trains all atoms in D at once.

All above algorithms are iterative batch procedures that
require to access a fixed set of training set to learn D. Though
they have shown the ability to exploit sparsity from the data,
they may not effectively handle dynamic training data chang-
ing over time such as geophysical models used in FWI. To
address this issue, we propose an online approach that up-
dates the orthonormal dictionary to adapt the currently ob-
tained model. The model for the next iteration is sparsely
represented by the updated dictionary and, therefore, such
sparsity allows us to make the industrial-scale FWI feasible
and much more efficient by significantly reducing its problem
dimensionality based on the compressive sensing method.

The contributions in this paper are the following:
• We propose an iterative online algorithm for orthonor-

mal dictionary learning by minimizing the expectation
of the cost function when new training samples join.
• We implement the compressive sensing framework into

large-scale FWI problems by admitting sparse repre-
sentation of model perturbations over learned dictio-
naries and reducing the problem dimensionality with
randomized encoding.
• As shown in Section 5, our method can significantly

reduce the amount of data used in FWI and decrease the
running time without introducing any visible artifacts.
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2. ORTHONORMAL DICTIONARY LEARNING

Given a signal set Y = [y1,y2, . . . ,yR] ∈ RN×R in which
each element represents a vectorized training sample, dictio-
nary learning minimizes the following empirical cost function

eR(Y,D) ,
1

R

R∑
i=1

(
‖yi −Dxi‖22 + λ‖xi‖0

)
(1)

where X = [x1,x2, . . . ,xR] ∈ RL×R are the sparse coeffi-
cients of Y over the dictionary D ∈ RN×L(N ≤ L), λ is
a Lagrange multiplier and ‖ · ‖0 is the `0-norm that counts
the nonzero entries of a vector. Since there are two unknown
variables D and X, this problem can be solved by minimiz-
ing over one while keeping the other one fixed, as commonly
done in K-SVD algorithms [4–6].

Orthonormal dictionary learning places a constraint on
D ∈ RN×N such that DTD = I and minimizes the empirical
cost function eR(Y,D) in (1), whose matrix form is

min
D,X

1

R

(
‖Y −DX‖2F + λ‖X‖0

)
s.t. DTD = I (2)

where ‖ · ‖F is the Frobenius norm. To solve the minimiza-
tion problem in (2), the first step is to find the sparsest repre-
sentation of Y = [y1,y2, . . . ,yR] over a fixed orthonormal
dictionary D. This first step would be formulated as

X̂ = argmin
X

(
‖Y −DX‖2F + λ‖X‖0

)
(3)

whose solution is straightforward by hard-thresholding the
entries of C = DTY with threshold

√
λ [10, 11] as

x̂ij =

{
cij , |cij | ≥

√
λ

0, |cij | <
√
λ.

(4)

The second step is to optimize the orthonormal dictionary D
by solving an orthogonal procrustes problem [12] that mini-
mizes the reconstruction error given the present values of the
sparse coefficients X̂ = [x̂1, x̂2, . . . , x̂R], i.e.,

D̂ = argmin
D

‖Y −DX̂‖2F s.t. DTD = I. (5)

It is proved in [10, 12] that if we define a matrix P = X̂YT

and and let P = UΣVT denote its singular value decompo-
sition (SVD), then the orthonormal matrix D̂ = VUT solves
(5). The orthonormal dictionary D can thus be learned by
alternating between the two steps (3) and (5) iteratively until
the cost function eR(Y,D) converges to a steady state.

When compared to the overcomplete dictionary learning
method K-SVD, the computational complexity of orthonor-
mal dictionary learning is significantly lower. For each learn-
ing iteration, we need only one matrix-vector multiplication
to obtain the sparse coding and one SVD to update the en-
tire dictionary D in (5). There is no need for complex itera-
tive algorithms such as basis pursuit or matching pursuit that
have been widely used in the K-SVD to update the dictionary
atoms sequentially.

3. ONLINE ORTHONORMAL DICTIONARY
LEARNING

For large-scale and dynamic dictionary learning problems, an
online method based on stochastic approximation is attrac-
tive. In this case, [13] suggests minimizing the expectation of
the cost function

e(D) , Ey

[
‖y −Dx‖22 + λ‖x‖0

]
= lim

R→∞
eR(Y,D) almost surely (6)

instead of the empirical cost function eR(Y,D). Then we can
make a trade-off between the computational complexity and
estimation error. Minimizing e(D) relies on the (unknown)
stochastic characteristics of the training samples, not the num-
ber of samples. Also, the online method takes the previous
learning information into account so that it always keeps the
representation sparse for dynamic data, which is a vital prop-
erty for applying compressive sensing in the FWI problems.

Input: input data y ∈ RN that follows an unknown
distribution p(y), initial orthonormal dictionary
D(0) ∈ RN×N , Lagrange multiplier λ, number of
update iterations T , mini-batch size R

Output: learned orthonormal dictionary D(T ), sparse
representation matrix X(T )

Initialization : P(0) = 0
for t = 1 to T do

Draw a mini-batch of data Y(t) = [y
(t)
1 ,y

(t)
2 , . . . ,y

(t)
R ];

while ‖Y −DX‖2F + λ‖X‖0 not converged do
C(t) = [D(t−1)]TY(t);

x̂
(t)
ij =

{
c
(t)
ij , |c

(t)
ij | ≥

√
λ

0, |c(t)ij | <
√
λ

;

β(t) = tR+1−R
tR+1

;
P(t) = β(t)P(t−1) + X(t)[Y(t)]T ;
SVD of P(t) = U(t)Σ(t)[V(t)]T ;
D(t) = V(t)[U(t)]T ;

end
end

Algorithm 1: Online Orthonormal Dictionary Learning

Algorithm 1 summarizes the online version of orthonor-
mal dictionary learning method. In each iteration, we first
draw R training samples Y(t), which can be from a large
dataset or from the current data snapshot. Then we carry out
sparse coding over the dictionary D(t−1) by hard-thresholding
with

√
λ, and obtain the updated dictionary D(t) aided by the

SVD of P(t). Essentially, the above two alternating steps
keep reducing the value of the cost function

êt(D) ,
1

t

t∑
i=1

(
‖Y(i) −DX(i)‖2F + λ‖X(i)‖0

)
(7)

which aggregates all historical information computed during
the previous learning iterations. One practical implementa-
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tion is to rescale the older information so that newer updates
X(t)[Y(t)]T can have more weight in P(t), which is done by
using a weighting factor β(t). It is proved in [13] that êt(D(t))
converges to e(D(t)) with probability one, so the online or-
thonormal dictionary learning converges to a stationary point.

4. A FULL WAVEFORM INVERSION FRAMEWORK
REGULARIZED BY GEOLOGICAL SPARSITY

FWI uses two-way wave equations to recover velocity models
from seismic survey data. The schematic workflow is shown
in Figure 1. Without loss of generality, we only consider 2D
acoustic waves in this paper (to conserve space).
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Fig. 1: Schematic FWI Workflow

In the frequency domain, forward modeling of an acous-
tic wavefield p(x, ω;xs) on a constant-density velocity model
m(x) of size Nz ×Nx with a point source f(ω)δ(x− xs) at
position xs, where f(ω) is usually a wavelet source, can be
written as the following partial differential equation (PDE)(

−m(x)ω2 −∇2
)
p(x, ω;xs) = f(ω)δ(x− xs) (8)

Let dobs(xr, ω;xs) denote the recorded seismic data col-
lected at receivers located at xr and dcal(xr, ω;xs) denote the
synthetic seismic data obtained by sampling the solution of
PDE (8) at the same receiver positions. FWI aims to minimize
the following nonlinear least squares misfit function [14]

J(m) ,
1

2
‖dobs − dcal‖22 (9)

where we stack the data of d(xr, ω;xs) for all Nr receivers,
Ns sources andNω frequencies into a vector d and denote the
velocity model as a vector m.

FWI is essentially a local optimization problem, where we
minimize (9) by approaching the true model iteratively

mk+1 = mk + δm. (10)

With the Born approximation of acoustic scattering [15],
Eq. (9) can be reformulated in the following linearized form

J(δm) ,
1

2
‖δd−Fδm‖22 (11)

where δd , dobs − dcal and F , ∂dcal/∂δm of size
NωNsNr × NzNx measures the sensitivity of the wave
field with respect to the model perturbation δm. Particularly,
F involves products of monochromatic Green’s functions
obtained from the PDE (8) for all source and receiver pairs
and all frequencies. Thus, for the FWI problem with Nω

frequencies, Ns shots and Nr receivers, minimizing J(δm)
in (11) typically requires solving Nω(Ns +Nr) PDEs.

Initialization : k = 0, m0 = ms, ∆0 =∞
while ∆k > ε and k ≤ kmax do

1. Randomly draw N ′ω out of Nω frequencies to form a
set Ω′ and N ′s out of Ns sources to form a set S ′;
2. Generate wΩ(ω) and wS(xs);
3. Extract dobs(xr, ω; xs) on frequencies ω ∈ Ω′ and
shots xs ∈ S ′ and stack them as dobs;
4. Solve Eq. (8) for Wdcal on ω ∈ Ω′ and xs ∈ S ′ with
randomized sources wΩ(ω)wS(xs)f(ω)δ(x− xs);
5. Denote Wδd = Wdobs −Wdcal;
6. αk = argmin 1

2
‖Wδd−WFDα‖22 s.t. ‖α‖1 ≤ τ ;

7. Inverse block-wise transform δmk = Dkαk;
8. Learn D(k+1) by Algorithm 1 from R blocks of δmk;
9. Update mk+1 = mk + δm;
10. ∆k = ‖mk+1 −mk‖2/‖mk‖2;
11. k ← k + 1;

end
Algorithm 2: Sparsity-Promoting FWI

In order to exploit sparsity, the model perturbation should
be δm = Dα whereD is a block-wise transform that converts
each block of δm into sparse coefficients for a dictionary D.
In order to reduce data dimensionality, an `1-norm constraint
is then placed on the sparse coefficients such that ‖α‖1 ≤ τ .
As a result, we propose a sparsity-promoting FWI based on
compressive sensing that minimizes the following misfit

J(α) ,
1

2
‖Wδd−WFDα‖22 s.t. ‖α‖1 ≤ τ (12)

where W = (RΩ′diag(wΩ)) ⊗ (RS′diag(wS)) ⊗ INr ∈
CN ′

ωN ′
sNr×NωNsNr is the random spatial-frequency sub-

sampling matrix. Random vectors wS and wΩ randomize
f(ω)δ(x−xs) on different shot positions xs and frequencies
ω. The restriction matrix RΩ′ randomly selectsN ′ω out ofNω

frequencies and RS′ randomly selects N ′s out of Ns sources.
Algorithm 2 outlines the overall FWI optimization proce-

dure which is initialized by a smooth model ms. For each it-
eration, we don’t have to generate explicitly the whole matrix
W; instead, only two random vectors wS and wΩ are needed
for random spatial-frequency modulations. We employ the
limited-memory projected quasi-Newton (l-PQN) algorithm
[16] to minimize J(α) because of its ability to project α
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into an `1-norm ball of radius τ . Each optimized δm is di-
vided into R blocks for online dictionary learning to update
D, which will be used in the next FWI iteration.

5. RESULTS

We test the proposed FWI method on two benchmark velocity
models named “BG-Compass” and “Marmousi” whose true
forms are shown in Figs. 2(a) and 3(a). Both models are
scaled to Nz × Nx = 100 × 100 grids and cover a width
of 17 km and a depth of 3.5 km. We deploy Nr = 100 re-
ceivers and generate Ns = 100 shots evenly spaced along the
surface of the model to collect wave data for FWI. The shot
source is a Ricker wavelet with Nω = 256 frequency com-
ponents centered at 20 Hz. FWI starts from initial smooth
models shown in Figs. 2(b) and 3(b). For every FWI itera-
tion we pick data dobs and dcal from N ′s = 10 random shots
and N ′ω = 16 random frequencies. In practical FWI imple-
mentations, these N ′ω = 16 random frequencies are equally
chosen within 4 consecutive frequency bands between 2 Hz
and 42 Hz to avoid local minima.
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Fig. 2: FWI results for the “BG-Compass” model with veloc-
ity range of 1500 to 4500 m/s.

After we finish 20 FWI iterations on one frequency
band, the more accurate model serves as the initial model
for another 20 FWI iterations on the next higher frequency
band. Thus, each evaluation of the compressed misfit J(α) is
(NωNs)/(N

′
ωN
′
s) = 160 times cheaper than the evaluation

of the full-data misfit J(δm), implying that our reduced-data
FWI could be roughly 160 times faster than the full-data FWI.

We compare the running time of one single FWI iteration
on a Quad-core i7 desktop computer equipped with 16 GB
RAM, and provide the times in Table 1 for one iteration. Mul-
tiple PDEs with different ω and xs can be solved in parallel.
Thus, only a few hours are needed to finish 80 iterations of
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Fig. 3: FWI results for the “Marmousi” model with velocity
range of 1500 to 5800 m/s.

FWI by using our reduced-data scheme, but the computation
would be prohibitive if the full dataset were used.

Model Reduced-data FWI Full-data FWI
BG-Compass 290 s 41325 s

Marmousi 315 s 44312 s

Table 1: Comparison of running time for one FWI iteration

The orthonormal dictionary D is initialized as an N ×
N = 100 × 100 DCT matrix (for 10 × 10 blocks) to pro-
vide sufficient block-wise sparsity on δm at the first iteration
and then updated by the optimized δm from each following
iteration. After 80 iterations, the online updated orthonormal
dictionaries are shown in Figs. 2(c) and 3(c). The updated
FWI results are given in Figs. 2(d) and 3(d), which clearly
shows the validity of this method on complex velocity mod-
els. Fig. 4 shows the misfit value versus the number of FWI it-
erations when using dictionary-based sparsity regularization.
We can see that the proposed method has quick convergence
within each frequency band.
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