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ABSTRACT
Knowledge of the three-dimensional spatial structure of
Earth’s uppermost atmosphere is necessary both to under-
stand its role as a dynamic buffer against the solar-driven
environment of interplanetary space as well as to assess the
rate of its permanent escape from Earth’s gravity through
evaporation. The only available means of inferring atmo-
spheric structure at these altitudes is through space-based
remote sensing of solar radiation that is resonantly scattered
or fluoresced by the ambient atoms. In this paper, the re-
sultant tomographic image formation problem is formulated
as an edge-preserving reconstruction algorithm based on the
framework originally proposed by Mumford & Shah. Statisti-
cal interpretation of this reconstruction solution is formulated
in the context of MAP estimation. The numerical results
illustrate that the proposed reconstruction algorithm is ca-
pable of obtaining physically meaningful solutions that are
superior to previous results formulated based on parametric
assumptions on the unknown density.

1. INTRODUCTION

Knowledge of the three-dimensional (3-D) spatial struc-
ture of Earth’s uppermost atmosphere, which extends from
several hundred to several tens of thousand kilometers, is nec-
essary both to understand its role as a dynamic buffer against
the solar-driven environment of interplanetary space as well
as to assess the rate of its permanent escape from Earth’s
gravity through evaporation. Elemental composition in this
boundary region is dominated by atomic hydrogen, H, which
forms a gravitationally-bound cloud known as the geocorona.
The 3-D structure of the H geocorona exhibits large-scale spa-
tial asymmetries and regional depletions as well as temporal
variability on timescales ranging from days to years.

The only available means of inferring atmospheric struc-
ture at these altitudes is through space-based remote sensing
of solar radiation that is resonantly scattered or fluoresced by
the geocoronal H atoms. Beyond ∼ 3 RE (1 RE = 1 Earth ra-
dius = 6371 km), where the number density of H atoms is
relatively low, scattering events are infrequent enough that
every photon detected can be assumed to have scattered ex-
actly once. In this “optically thin” approximation, geocoronal

emission intensity at 121.6 nm (know as Lyα), denoted here
by y, measured from a planetocentric vantage r along a look
direction n̂, is related to the number density of the emitters,
N , as follows:

yi(ri, n̂i) = k(n̂i)

∫ l∞[n̂i]

0

N(r′) dl (1)

where the integration is over distance l ≡ |r′ − ri| along the
line of sight, k is a look-angle dependent coefficient that is
a function of solar source strength and can be assumed time-
independent, and i ∈ {1, 2, . . . , I} is the observation index
[1]. The common observation geometry is 3-D, so r, n̂ ∈ R3.
Although “∞” is used in the integration limit, the H density
field can be assumed to have finite support of ∼ 30 RE [2].

Several satellite missions have been deployed over the
past several decades in order to estimate the three-dimensional
H density field N from an ensemble of photometric observa-
tions of Lyα. While the measurement position r varies slowly
as the satellite transits the region, the photon detector typi-
cally is mounted on a rotating or otherwise spatially-scanning
platform. As a result, the look direction n̂ of the column
emission measurements varies significantly from sample to
sample and provides common-volume sensing over some
finite duration of data acquisition.

Historical attempts to infer the three-dimensional struc-
ture of the geocorona from such data have been parametric,
based on an assumed functional form (e.g., [3, 4]). This
model-dependent approach precludes the detection of small
scale spatial structuring, such as polar depletions or local-
ized enhancements in the H source population, and thus is
insufficient to fulfill the needs of the scientific community.

In this work, we present a new means of reconstructing the
geocoronal H density field through a tomographic inversion of
optically thin emission intensity data. This approach avoids
the dependence on parametric formulations of the unknown H
density distribution. Because the tomography concept is not
dependent on the dimension of the observation geometry, we
illustrate the technique here in a 2-D framework without loss
of generality.
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2. FORWARD MODEL

In 2-D, we define the sampling variables r, n̂ ∈ R2. To
solve forN from observations yi(ri, n̂i) in (1), we use a polar
grid to discretize the region of interest into J polar rectangles
which are separated by constant radius and angle. For suffi-
ciently large J , variation in the H-density within a given polar
rectangle is negligible such that the density can be assumed to
be constant. In that case, we project the functionN(r) onto J
discrete orthonormal basis functions {Nj(r)}Jj=1 such that:

N(r) =

J∑
j=1

xjNj(r) (2)

and (1) becomes:

yi(ri, n̂i) =

J∑
j=1

[
k(n̂i)

∫ l∞[n̂i]

0

Nj(r
′) dl

]
xj (3)

Basis functions can be constructed in an arbitrary way,
and we use standard basis functions in polar coordinates:

Nj(r) =

{
1 if r ∈ Pj
0 else

(4)

where Pj = {r ∈ R2 : rjstart ≤ ‖r‖ ≤ rjend & θjstart ≤
arg(r) ≤ θjend}. Since the term in the square brackets in (3)
is known a-priori, we can express (1) as:

yi(ri, n̂i) =

J∑
j=1

Lijxj (5)

which is equivalent to the algebraic form: y = Lx where y
is a [I × 1] vector of measurements yi, x is a [J × 1] vector
of polar rectangles xj , and L is a [I × J] observation matrix.
Denoting w as a [I × 1] noise vector associated with each
measurement, the forward model becomes:

y = Lx + w (6)

The inherent constraints on the observing geometry dic-
tate a non-uniform limited-angle measurement acquisition.
Furthermore, depending on the observation frequency, typi-
cally I 6= J , such that the observation matrix L does not have
full rank. Thus, existence, uniqueness, and stability of the
solutions are not guaranteed, causing the inverse problem to
be ill-posed. An example of such a limited-angle observation
scenario is depicted in Figure 1.

3. INVERSE MODEL

3.1. Variational Method

As discussed above, rank-deficient property of the obser-
vation matrix L results in an ill-posed tomography problem.

Fig. 1: Observation geometry depicting individual lines-of-
sight for individual measurements from a rotating, transiting
satellite.

Therefore, direct inversion to reconstruct the field is not ap-
plicable. Since noise is inherent in the measurements and
the problem is ill-conditioned, least squares solution is inad-
equate and regularization is needed to ensure solution stabil-
ity. The most commonly used technique to improve condi-
tioning of the problem, Tikhonov regularization [5], has the
quadratic objective function: E(x) = ‖y−Lx‖22 +α2‖Dx‖22
where ‖ · ‖p is the lp norm operator, and D is a first order
discrete gradient operator. This variational form is equiva-
lent to a Maximum-a-posteriori estimate x̂MAP , assuming
y|x ∼ N (Lx, I), x ∼ N

(
0, (DTD)−1

)
. The solution x̂

is obtained under the implicit assumption that the underly-
ing field varies smoothly and thus produces globally smooth
undesirable results when the underlying field contains spa-
tial gradients as is the case in the atmospheric H density field
[6, 7, 8].

To overcome this limitation, an edge-preserving recon-
struction algorithm is needed. The physical knowledge of our
problem motivates Mumford-Shah (MS) functional [9] which
has the form:

û = arg min
u

∫
Ω

(u− f)2dx+α2
1

∫
Ω\Γ
|∇u|2dx+α2

2|Γ| (7)

where Ω ⊂ R2 is the image domain, f is an image field, and
Γ ⊂ Ω is the segmentation of Ω. In this functional, the min-
imizer û represents the piecewise smooth approximation of
the original image f . An edge set is used to prevent the algo-
rithm from smoothing the edges in the image. Similarly, the
first term in equation (7) is the data fidelity term, which re-
quires image u to be close to image field f . The second term
is the regularization term, which requires smoothness in the
non-boundary part. In other words, the gradient of u is added
up only in the region of Ω\Γ. Therefore, changes of value in
the region Ω\Γ will be penalized. Along the edge/boundary,
any arbitrary change is allowed. The third term is the second
regularization term, preventing excessive edges in the recon-
struction.

Due to the non-differentiability of (7), the discrete Am-
brosio & Tortorelli approximation [10] of the MS functional
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is used:

(x̂, ŝ) = arg min
x,s∈RJ

‖y − Lx‖22 + α2
1‖Dx‖2Ws

+
1

2

(
ρ‖Ds‖22 +

‖s‖22
ρ

) (8)

where
Ws = diag

(
(1− s)2

)
(9)

where s ∈ RJ is an edge field corresponding to x, and ρ > 0
is a parameter such that as ρ → 0, functional (8) approaches
functional (7).

Instead of having an edge set Γ, a smooth varying
“edginess” (i.e. si ∈ [0, 1]) is used for the corresponding
xi,∀i ∈ {1, . . . , n}. In the first regularization term, ‖ · ‖Ws

is a weighted sum, such that if an element xi is more likely
to be the edge, it will be penalized less than other elements,
allowing the algorithm to preserve edges. The second reg-
ularization term demands the smoothness of the edge field
s itself. Having introduced Ws, which is dependent on s,
the objective function (8) becomes non-linear. There are
many ways to minimize a non-linear functional. For instance,
algorithms such as Levenberg-Marquardt Algorithm can be
applied. However, convergence and computation time is not
guaranteed depending on the choice of initial point. An-
other method is the fixed point iteration (coordinate descent
method) [11], in which we fix x and minimize E(x, s) with
respect to s., and then, we fix s and construct Ws to minimize
E(x, s) with respect to x. Namely, we set ∂

∂xE(x, s) = 0

and ∂
∂sE(x, s) = 0; the minimum has to satisfy:(

LTL + α2
1D

TWsD
)
x̂ = LTy (10)

(
Wx + α2

2D
TD
)
ŝ = Wxz (11)

where
Wx = diag

(
α2

1(Dx)2 + α2
3

)
(12)

z = Wx
−1
(
α2

1(Dx)2
)

(13)

For v ∈ Rn×1, v2 is defined to be the element wise
square. The fixed point iteration converges to a local min-
imum in a linear convergence rate [12]. Then, to solve for
(10) and (11), we can use pre-conditioned conjugate gradient
iterative method, thus solving the overall equation (8).

3.2. Maximum-a-posteriori (MAP) Estimation

In this subsection we formulate the solution of MS func-
tional as a solution to a Maximum-a-posteriori problem. The
solution is:

(x̂, ŝ) = arg max
x,s∈RJ

(
p(y|x, s) p(x, s)

)
(14)

Assuming Bayesian statistics for all image, edge field, and
noise, we have:

(x̂, ŝ) = arg min
x,s∈RJ

(
− log p(y|x, s)− log p(x, s)

)
= arg min

x,s∈RJ

‖y − Lx‖22 + ‖Dx‖2Ws
+ ‖Ds‖22 + ‖s‖22︸ ︷︷ ︸

∝− log p(x,s)

(15)

For simplicity, and without loss of generality, we drop the
coefficients in (8). When expanding the regularization terms
in (15), denoted by R, they become:

R = ‖Dx‖2Ws
+ ‖Ds‖22 + ‖s‖22

= xTDTWsDx + sTDTDs + sT s
(16)

Now, we define:

Σ−1
1 = DTWsD

Σ−1
2 = DTD + IJ

v =

[
x
s

] (17)

By combining all terms in (16),

R = vTΣ−1v (18)

where we define Σ−1 =

[
Σ−1

1 0
0 Σ−1

2 .

]
. Therefore,

p(v) = p((x, s)) = k−1 exp
(
− 1

2
‖v‖2Σ−1

)
(19)

where k is a normalization constant.
If v is an image with an edge field, the prior favors those

that are piece-wise smooth and possess limited amount of
edges. A future direction is to incorporate not only the general
“characteristics” of the underlying image, but also to learn
the statistical distribution or moments of the priors based on
available training data.

4. NUMERICAL EXPERIMENTS

4.1. Synthetic data

In principle, it is possible to design an observation (ac-
quisition) geometry and sampling scheme that would yield
optimal reconstruction results with respect to some optimal-
ity criterion for a given algorithm. In practice, however, due
to the prohibitive cost of a dedicated space mission, it is more
realistic to take advantage of a mission of opportunity with
a predetermined orbital configuration. Such an observation
geometry, which is based on the trans-lunar trajectory of the
upcoming Explorer Mission 1 (EM-1) spacecraft, is used in
the numerical experiments presented in this section.
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(a) Original Image (b) Tikhonov Reconstruction (c) Mumford-Shah Reconstruction

Fig. 2: These are the original image (left), image reconstructed using Tikhonov regularization (middle), and image reconstructed
using Mumford-Shah regularization (right).

The ensemble of simulated Lyα emission intensity data
is acquired as the satellite transits the 2-D density field from
6-12 RE, along a straight line oriented radially away from
Earth. The observing positions, denoted ri in (1), are spaced
along this trajectory every 630 km. At a given position, 300
measurements are acquired along lines-of-sight evenly spaced
in the 2-D plane every 1.2◦, corresponding to a 1 second in-
tegration by a detector that is rotating with a 5 minute pe-
riod. These sampling parameters are consistent with typical
space-based Lyα detector capabilities and satisfy threshold
requirements for sufficient photon counting rates. Figure 1
depicts the sampling geometry as green lines-of-sight ema-
nating from the viewing positions. Because the formulation
of (1) assumes optically thin conditions which only exist be-
yond 3 RE, lines-of-sight passing within this radius are not
included in the sample set.

The synthetic H density data is based on the empirical
model reported by Zoennchen et al. [4], which was derived as
a parametric fit of optically thin Lyα emission intensity data
acquired from the orbiting NASA TWINS satellites. The [4]
model assumes that the functional form of the 3-D distribu-
tion at a given distance from Earth is a spherical harmonic
expansion up to the second order whose coefficients decay
exponentially with increasing distance from Earth. Our syn-
thetic model corresponds to the reported parametric fit eval-
uated in the 2-D meridional plane at the center points of the
polar rectangles.

In addition to the smoothly varying synthetic model, we
also consider the presence of a regional density depletion in
order to compare the edge preserving properties of Tikhonov
and Mumford-Shah regularization. Densities in the deple-
tion region are reduced by 90% relative to their un-modified
values. The annulus of 3RE ≤ r ≤ 30RE is divided into
18 × 30 = 540 polar rectangles, as shown in Figure 2a. The
resolution is chosen in such a way so that it is not too high to
cause overfitting, and it is not too low to be unable to repre-

sent the underlying image.

4.2. Reconstruction Results

Figure 2 shows the reconstruction results using the
Mumford-Shah method in comparison with Tikhonov reg-
ularization and illustrates its superior performance when
significant structure is present in the underlying density field.
Figure 3 shows the residual errors of the two reconstruction
techniques. In general, the error of estimation is smaller in the
region where the satellite’s trajectory allows dense sampling.

Fig. 3: Plots of log of Residuals when reconstructing using
Tikhonov and Mumford-Shah.

5. CONCLUSION

The reconstruction results using MS regularization in
(7) shows strong ability to reveal edges in the underlying
unknown field, which is not practical by using parametric
models. Therefore, this algorithm allows model-independent
tomographic inversion to reconstruct geocoronal H density
field. Future work will include learning prior distribution of
the field and incorporating this information in the reconstruc-
tion process.
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