
RADAR IMAGING OF STATIONARY INDOOR TARGETS USING JOINT LOW-RANK AND
SPARSITY CONSTRAINTS

V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive

School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong, NSW, 2522, Australia

ABSTRACT

This paper introduces a joint low-rank and sparsity-based model

to address the problem of wall-clutter mitigation in compressed

through-the-wall radar imaging. The proposed model is moti-

vated by two observations that wall reflections reside in a low-rank

subspace, and target signals tend to be sparse. In the proposed ap-

proach, the task of segregating target returns from wall reflections

is formulated as a joint low-rank and sparsity constrained optimiza-

tion problem. Here, the low rank constraint is imposed on the wall

component and the sparsity constraint is used to model the target

component. An iterative soft thresholding algorithm is developed

to estimate a low-rank matrix of wall clutter and a sparse matrix of

target reflections from a reduced measurement set. Once the wall

and target components are estimated, the target signals are used for

scene reconstruction. Experimental evaluation was conducted using

real radar data. The results show that the proposed model is very

effective at removing wall clutter and reconstructing the image of

behind-the-wall targets from reduced measurements.

Index Terms— Through-the-wall radar imaging, wall clutter

mitigation, compressed sensing, low-rank matrix recovery, sparse

reconstruction.

1. INTRODUCTION

Through-the-wall radar (TWR) imaging is intended for capturing

scenes behind walls and other visually opaque materials. The abil-

ity to sense through enclosed structures is highly useful for numer-

ous civilian and military applications, including search and rescue

operations, surveillance and reconnaissance [1, 2]. Imaging indoor

scenes, however, is challenging due to strong front-wall electromag-

netic (EM) returns. The front-wall EM reflections typically domi-

nate those from targets, rendering target detection difficult or even

impossible [3]. Furthermore, multiple reflections within the front

wall produce reverberations which obscure the radar returns from

weak targets. Hence, before scene reconstruction, the target signals

need to be segregated from the wall returns to reduce clutter and

reveal stationary indoor targets.

Conventionally, a scene image can be formed from a full mea-

surement set using backprojection methods, such as delay-and-sum

(DS) beamforming [4]. Recently, compressed sensing (CS) has been

employed for fast data acquisition and accurate signal reconstruc-

tion from reduced data samples [5, 6]. In TWR imaging, most CS

techniques [7–11] assume that the wall returns can be completely

removed before applying CS, or a background scene is available for

suppressing the wall reflections. Very recently, wall mitigation tech-

niques were investigated in the CS context [12–14]. In compressed

TWR sensing, the same frequency observations may not be available

at different antennas due to competing wireless services, intentional

interferences, or radar jamming [15]. Therefore, most existing CS-

based approaches for wall-clutter mitigation are performed in two

stages. In the first stage, the antenna signals are recovered from

reduced data samples using ℓ1 minimization [12], joint Bayesian

sparse approximation [13], or block-sparse estimation [14]. In the

second stage, the wall reflections are removed by applying clutter

mitigation techniques, such as spatial filtering [16], or subspace pro-

jection [17, 18], prior to image formation.

In this paper, we propose a new approach for wall clutter miti-

gation and scene reconstruction in compressed TWR sensing. The

proposed approach is inspired by two important observations that

the wall radar returns lie in a low-rank subspace, and the target sig-

nals are sparse when represented in a proper basis. An optimization

problem with low-rank and sparse constraints is proposed to sepa-

rate the wall reflections from the target returns. Given a matrix of

reduced measurements, the objective of the optimization problem is

to jointly estimate a matrix of wall reflections and a matrix of target

signals. In other words, it aims to decompose a matrix with missing

entries into a low-rank matrix comprising wall returns and a sparse

matrix containing target signals. Compared to the existing two-stage

methods, the proposed approach is able to simultaneously segregate

target signals from wall reflections, recover missing target returns,

and produce clutter-free signals for image reconstruction in a unified

framework.

The remainder of the paper is organized as follows. Section 2

introduces the TWR signal model. Section 3 describes the proposed

joint low-rank and sparsity model for segregating wall returns and

target signals. Section 4 presents experimental results and analysis.

Section 5 gives concluding remarks.

2. TWR SIGNAL MODEL

Consider a monostatic stepped-frequency TWR system where a

transceiver is placed at several scan positions parallel to the wall

to synthesize a horizontal M -element linear antenna array. The

scene is interrogated by transceiving a stepped-frequency signal

comprising N frequencies, equally spaced over the sensing band-

width. Suppose that the scene contains P targets placed behind the

wall. Let zn,m denote the n-th frequency signal received at the m-th

antenna location. The signal zn,m is modeled as the superposition

of the wall reflection zwn,m (including wall reverberations), target

return ztn,m, and noise υn,m:

zn,m = z
w
n,m + z

t
n,m + υn,m. (1)

The wall component zwn,m is given by

z
w
n,m =

L
∑

l=1

σwale
−j2πfnτl

m,w , (2)

1412978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



where σw is the reflectivity of the wall, L is the number of wall re-

verberations, al is the path loss factor associated with the l-th wall

return, and τ l
m,w is the propagation delay of the l-th wall reverbera-

tion. The target return can be expressed as

z
t
n,m =

P
∑

p=1

σpe
−j2πfnτm,p , (3)

where σp is the reflectivity of the p-th target, and τm,p is the round-

trip travel time of the signal from the m-th antenna location to the

p-th target.

For image formation, the scene is partitioned into a rectangular

grid consisting of Q pixels. Using DS beamforming, the complex

amplitude of the q-th pixel can be computed as [4]

I(q) =
1

MN

M
∑

m=1

N
∑

n=1

zn,m exp(j2π fn τm,q), (4)

where τm,q is the focusing delay between the m-th transceiver and

the target located at the q-th pixel position. Applying DS beam-

forming or other backprojection methods to the radar signal given in

Eq. (1) yields a scene image in which strong wall clutter obscures

the targets of interest. To reveal the targets, wall reflections must

be removed from the received signals before image formation; that

is, ideally we want to replace zn,m in Eq. (4) by ztn,m given in

Eq. (3). If the full data volume is available, wall mitigation tech-

niques [3, 16, 17] can be applied directly to recover ztn,m. However,

for practical compressed TWR sensing, we may have only a reduced

measurement set acquired along the antenna array. Hence, the tech-

niques that perform wall clutter mitigation within the CS context

need to be investigated for indoor imaging. The next section de-

scribes the proposed joint low-rank and sparsity model for segregat-

ing target signals from wall returns.

3. JOINT LOW-RANK AND SPARSITY MODEL

This section presents the joint low-rank and sparse model for wall

clutter mitigation and scene reconstruction in compressed TWR

sensing. First, the received measurements along different antennas

are arranged into a matrix. Then the task of separating wall reflec-

tions and target returns is cast as a low-rank and sparse constrained

optimization model, where the nuclear-norm is used to enforce the

low-rank property of the wall-clutter matrix and the ℓ1-norm is

used to guarantee the sparsity of the target matrix. An iterative

soft thresholding algorithm is developed to obtain the wall and tar-

get components. Finally, the target component is used for scene

reconstruction.

3.1. Problem formulation

Let Z = [zn,m], Zw = [zwn,m], Zt = [ztn,m], and Υ = [υn,m] de-

note the N ×Mmatrices containing, respectively, the radar signals,

the wall reflections, the target returns, and the noise received for all

N frequencies by all M antennas. Equation (1) can be rewritten in

matrix-form as

Z = Z
w + Z

t +Υ. (5)

Now, the goal is to estimate Zw and Zt by decomposing the matrix

Z into a low-rank matrix Zw and a sparse matrix Zt, plus noise. This

decomposition task is known as robust principal component analysis

(RPCA) [19]. In RPCA model, given a data matrix, which is the su-

perposition of a low-rank component and a sparse component, it is

possible to recover both the low-rank and sparse components exactly

by minimizing a weighted combination of the nuclear norm and ℓ1
norm. Let ‖Zw‖∗ denote the nuclear-norm (i.e. the sum of the sin-

gular values of the matrix Zw) and let
∥

∥Zt
∥

∥

1
be the ℓ1-norm of Zt.

Then, the low-rank component Zw and sparse component Zt can be

estimated by solving the following optimization problem:

minimize
Zw, Zt

‖Zw‖∗ + λ
∥

∥Z
t
∥

∥

1
s. t.

∥

∥Z− (Zw + Z
t)
∥

∥

2
< ǫ,

(6)

where ‖.‖
2

represents the Frobenius norm, λ is a regularization pa-

rameter used to achieve a trade off between the low-rank and sparse

constraints, and ǫ is a noise bound. The RPCA framework, how-

ever, is effective only if all the data measurements or entries of Z are

available. In this case, the problem in Eq. (6) can be solved using

convex optimization [20].

In compressed TWR sensing, instead of collecting all (N ×M)
data samples, only a reduce set containing K measurements is ob-

tained (K ≪ N ×M ). Let Φ be a selection matrix containing a

single unit value in each row and each column. We denote by A:

C
M×N → C

K the linear operator mapping an N × M matrix Z

into a K × 1 vector y,

y = A(Z) = Φ vec(Z), (7)

where vec(Z) denotes the vectorization by stacking the matrix Z

into a column vector. The compressed measurement vector y ∈ C
K

can be expressed as

y = A(Z) = A(Zw + Z
t +Υ). (8)

Now we can recast the optimization problem in (6) as

minimize
Zw, Zt

‖Zw‖∗ + λ
∥

∥Z
t
∥

∥

1
s. t.

∥

∥y −A(Zw + Z
t)
∥

∥

2
< ǫ.

(9)

A greedy method, namely SpaRSC [21] has been proposed for

solving the optimization problem (9). It combines ADMiRA [22],

for low-rank matrix recovery, with CoSaMP [23], for sparse com-

ponent recovery. This method, however, requires knowledge of the

rank R of matrix Zw and the sparsity level S of the sparse matrix Zt,

which are typically unknown in practical TWR sensing problems.

In [24], a template for first-order conic solvers (TFOCS) framework

was adopted to estimate the low-rank and sparse components, but it

is not robust in the presence of noise. To overcome these challenges,

we introduce next an iterative algorithm to solve the optimization

problem (9). The solution yields a low-rank matrix of wall returns

and a sparse matrix of target signals.

3.2. Optimization algorithm

We propose an iterative algorithm to jointly recover a low-rank ma-

trix and a sparse component given reduced data samples, see Eq. (9).

Here, instead of assuming the sparsity in the signal domain, we in-

corporate a sparsifying dictionary W used to represent the signal

matrix. Furthermore, the constrained optimization problem (9) is

cast into a Lagrangian regularization form:

minimize
Zw,Zt

∥

∥y −A(Zw + Z
t)
∥

∥

2
+ λw(‖Z

w‖∗ + λ
∥

∥WZ
t
∥

∥

1
),

(10)

or

minimize
Zw,Zt

∥

∥y −A(Zw + Z
t)
∥

∥

2
+ λw ‖Z

w‖∗ + λt

∥

∥WZ
t
∥

∥

1
,

(11)
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where λw and λt are, respectively, the regularization parameters

for the low-rank and sparse components. To solve Problem (11),

we introduce an iterative soft thresholding algorithm that efficiently

shrinks the singular values of Zw and the entries of the matrix WZt

towards zero. To this end, we define a thresholding operator

Tτ (x) =
x

|x|
(|x| − τ)+, (12)

where x is a complex number, τ is a real number, and (t)+ is the

positive part of t, i.e. (t)+ = max(t, 0). Extended to vectors and

matrices, this shrinkage operator is applied entrywise. Using this

shrinkage operator, a singular value thresholding (SVT) operator ap-

plied to Zw is defined as

Sτ (Z
w) = U Tτ (Λ)VH

, (13)

where Zw = UΛVH is the singular value decomposition of Zw.

Given the compressed measurement vector y, application of the

iterative soft thresholding algorithm produces a series of estimates

Z̃w
i and Z̃t

i that converge towards the true values Zw and Zt. Here

Z̃w
i and Z̃t

i denote, respectively, the estimates of matrices Zw and

Zt at the i-th iteration. The soft thresholding algorithm can be sum-

marized in the following steps:

1. Initialization: Set Z̃0 = ATy, where AT is the adjoint oper-

ator of A, Z̃w
0 = Z̃0, Z̃t

0 = 0, and i = 1.

2. Singular-value soft thresholding:

Z̃
w
i = Sλw (Z̃i−1 − Z̃

t
i−1)

3. Soft thresholding in the transform domain:

Z̃
t
i = W

†(TλtW(Z̃i−1 − Z̃
w
i−1)),

where † denotes pseudo-inverse operator.

4. Data consistency and iteration:

If
∥

∥

∥
Z̃w

i + Z̃t
i − (Z̃w

i−1 + Z̃t
i−1)

∥

∥

∥

2
∥

∥

∥
Z̃w

i−1 + Z̃t
i−1

∥

∥

∥

2

< δ

terminate the algorithm,

Else,

Z̃i = Z̃
w
i + Z̃

t
i −A

T (A(Z̃w
i + Z̃

t
i)− y)

i← i+ 1

go to Step 2.

This iterative algorithm performs two main tasks: soft threshold-

ing of singular values for low-rank estimation and iterative shrink-

age for sparse reconstruction. It can be considered as a combination

of SVT method for matrix completion [25] and an iterative shrink-

age approach employed for sparse estimation [26]. In [25], it has

been proven that the low-rank property is guaranteed, and the iter-

ative SVT converges to an accurate low-rank estimate. It has also

been shown in [26] that iterative shrinkage of signal coefficients in

a transform domain promotes sparsity and converges for ℓ1-norm

minimization problems. Since the proposed algorithm combines the

SVT and shrinkage operators, it inherits its convergence properties

from these two methods and leads to accurate estimates of low-rank

matrix Z̃w and sparse component Z̃t. Now, the estimated target

component Z̃t can be used for image formation. It is important to

note here that the proposed model not only segregates the target sig-

nals from wall returns, but it also recovers the missing target signals

in matrix Z̃t.

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the experimental results obtained using

real radar data. Experimental analysis and comparison with existing

compressed TWR imaging models are also provided.

4.1. Experimental setup

The proposed approach is evaluated on real radar data acquired

with a radar system placed in front of a concrete wall of thickness

0.143 m. A 57-element line array with an inter-element spacing of

0.022 m was placed at a standoff distance of 1.016 m away from the

wall. A stepped-frequency signal between 0.7 and 3.1 GHz, with 3

MHz frequency step, was used to scan a scene containing a 0.39 m

high and 0.28 m wide dihedral. The imaged scene, extending from

[0, 4] m in downrange and [-2, 2] m in crossrange, is partitioned into

an image of 100× 100 pixels.

The proposed model requires a sparsifying dictionary W and

regularization parameters λw and λt. In all experiments, the dictio-

nary W is constructed using modulated discrete prolate spheroidal

sequences (DPSS) since the DPSS dictionary can represent bandpass

radar signals more compactly than does the Fourier basis [14]. The

algorithm is found to be robust for small regularization parameter

values, which are set to λw = λt = 10−2. The algorithm terminates

when the relative change of the solution is smaller than δ = 10−8,

see Step 4.

In the experiments, the image quality is evaluated using the

target-to-clutter ratio (in dB):

TCR = 10 log10(

1

Nt

∑

q∈At
|I(q)|2

1

Nc

∑

q∈Ac
|I(q)|2

), (14)

where At is the target region, Ac is the clutter region defined as the

entire image excluding the target region, Nt and Nc are the number

of pixels in the target and clutter regions, respectively. The receiver

operating characteristic (ROC) curve is used to compare the proba-

bility of target detection at different false alarm rates [2].

4.2. Results and analysis

In the first experiment, we evaluate the proposed model for the

case when all measurements are available for image formation.

Figure 1(a) shows the image of the dihedral formed using the full

data without wall clutter mitigation. Clearly, the wall returns domi-

nate the target signals, making target detection difficult. Figures 1(b)

and 1(c) present the images formed after applying wall clutter mit-

igation using, respectively, spatial filtering [16] and subspace pro-

jection [3] techniques. It can be observed that the strong front wall

clutter and its reverberations are suppressed, revealing the target.

Figure 1(d) shows the image formed using the target signal obtained

by the proposed joint low-rank and sparsity approach. In the formed

image, clutter and background noise are further reduced, resulting

in an improved TCR image.

In the second experiment, a reduced data set that accounts for

only 15% of the full data volume was randomly selected for imaging

the target. Since the wall-clutter mitigation techniques are not effec-

tive for compressed TWR imaging, we present here imaging results,

shown in Figs. 2(a)–(b), obtained with a two-stage TWR imaging

scheme [12] that first recovers radar signals independently along an-

tennas using ℓ1 minimization and then applies wall clutter mitiga-

tion techniques. It can be observed that the target is detected, but the

intensity of the target pixels is weak. For comparison, Figure 2(c)

presents the image formed with the target component obtained using
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Fig. 1. Images formed with full measurements using: (a) raw data

(TCR=9.42 dB), (b) spatial filtering (TCR=18.41 dB), (c) subspace

projection (TCR=18.89 dB), (d) proposed joint low-rank and spar-

sity model (TCR=24.03 dB). Wall and target regions are indicated

with dashed and solid rectangles, respectively.

(a) (b)

Crossrange (m)

 

 

-2 -1 0 1 2
0

1

2

3

4

-25

-20

-15

-10

-5

0

(c) (d)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

 

 

-2 -1 0 1 2
0

1

2

3

4

-25

-20

-15

-10

-5

0

Crossrange (m)

D
o

w
n

ra
n

g
e
 (

m
)

 

 

-2 -1 0 1 2
0

1

2

3

4

Fig. 2. Images formed with 15% frequency measurements using:

(a) two-stage ℓ1 minimization & spatial filtering (TCR=7.88 dB),

(b) two-stage ℓ1 minimization & subspace projection (TCR=9.33

dB), (c) target signals estimated with SpaRSC [21] (TCR=17.88

dB), and (d) target signals reconstructed by the proposed algorithm

(TCR=18.79 dB).

SpaRSC method [21] to solve the low-rank and sparsity model. Note

that this algorithm requires knowledge of the rank R of the wall ma-

trix and the sparsity level S of the target signal matrix. Here these

parameters were set to R = 2 and S = 20. We observe that the tar-

get region is significantly enhanced. Figure 2(d) presents the image

formed using the target component reconstructed by the proposed it-

erative algorithm. It is clear that the image quality is enhanced and

the clutter is further attenuated.

Figure 3 illustrates the ROC curves of the images formed after

applying different wall clutter mitigation approaches. We observe

that the joint low-rank and sparsity model significantly enhances tar-

get detection, especially when the number of data samples is sig-

nificantly reduced. The improvement in image quality and target

detection can be justified by the fact that the proposed model uses

both the low-rank and sparse representations to capture the underly-

ing structures of the TWR signals. As a result, the proposed model is

able to jointly separate wall and target components and reconstruct

the target signals, which are used for image formation.
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Fig. 3. ROC curves for target detection from images formed by

applying different wall-clutter suppression methods. See electronic

color figure.

5. CONCLUSION

This paper presented a joint low-rank and sparsity-based approach

for wall clutter mitigation and target image formation. A constrained

optimization model is formulated where the nuclear-norm is used

to enforce the low-rank condition on the matrix of wall returns and

ℓ1-norm is employed to control the sparsity of target signals. An

iterative soft thresholding algorithm is proposed to estimate the wall-

clutter and target components from compressed radar measurements.

Experimental results show that the proposed approach enhances the

target-to-clutter ratio and improves target detection even when the

number of measurements is significantly reduced.

Acknowledgments

The authors would like to thank Dr. Moeness G. Amin and Dr.

Fauzia Ahmad from the Center of Advanced Communications at

Villanova University, Villanova, PA, USA, for providing the experi-

mental data. This work is supported by a grant from the Australian

Research Council (ARC).

1415



6. REFERENCES

[1] M. G. Amin (Ed.), Through-The-Wall Radar Imaging. Boca

Raton, FL: CRC Press, 2010.

[2] C. H. Seng, A. Bouzerdoum, M. G. Amin, and S. L. Phung,

“Probabilistic fuzzy image fusion approach for radar through

wall sensing,” IEEE Trans. Image Processing, vol. 22, no. 12,

pp. 4938–4951, Dec. 2013.

[3] F. H. C. Tivive, A. Bouzerdoum, and M. G. Amin, “An SVD-

based approach for mitigating wall reflections in through-the-

wall radar imaging,” Proc. IEEE Radar Conf., pp. 519–524,

Kansas City, MO, 23–27 May 2011.

[4] F. Ahmad, M. G. Amin, and S. A. Kassam, “Synthetic aper-

ture beamformer for imaging through a dielectric wall,” IEEE

Trans. Aerospace and Electronic Systems, vol. 41, no. 1, pp.

271–283, Jan. 2005.

[5] D. L. Donoho, “Compressed sensing,” IEEE Trans. Informa-

tion Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[6] E. J. Candes, J. Romberg, and T. Tao, “Stable signal recovery

from incomplete and inaccurate measurements,” Communica-

tions on Pure and Applied Mathematics, vol. 59, no. 8, pp.

1207–1223, Aug. 2006.

[7] Q. Huang, L. Qu, B. Wu, and G. Fang, “UWB through-wall

imaging based on compressive sensing,” IEEE Trans. Geo-

science and Remote Sensing, vol. 48, no. 3, pp. 1408–1415,

Mar. 2010.

[8] Y.-S. Yoon and M. G. Amin, “Through-the-wall radar imaging

using compressive sensing along temporal frequency domain,”

Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process-

ing, pp. 2806–2809, Dallas, TX, 14–19 Mar. 2010.

[9] M. Leigsnering, C. Debes, and A. M. Zoubir, “Compressive

sensing in through-the-wall radar imaging,” Proc. IEEE Int.

Conf. Acoustics, Speech, and Signal Processing, pp. 4008–

4011, Prague, Czech Republic, 22–27 May 2011.

[10] J. Yang, A. Bouzerdoum, F. H. C. Tivive, and M. G. Amin,

“Multiple-measurement vector model and its application to

through-the-wall radar imaging,” Proc. IEEE Int. Conf. Acous-

tics, Speech and Signal Processing, pp. 2672–2675, Prague,

Czech Republic, 22–27 May 2011.

[11] V. H. Tang, A. Bouzerdoum, and S. L. Phung, “Two-stage

through-the-wall radar image formation using compressive

sensing,” Journal of Electronic Imaging, vol. 22, no. 2, pp.

021 006.1–021 006.10, Apr.–Jun. 2013.

[12] E. Lagunas, M. G. Amin, F. Ahmad, and M. Najar, “Joint

wall mitigation and compressive sensing for indoor image re-

construction,” IEEE Trans. Geoscience and Remote Sensing,

vol. 51, no. 2, pp. 891 – 906, Feb. 2013.

[13] V. H. Tang, A. Bouzerdoum, S. L. Phung, and F. H. C. Tivive,

“Enhanced wall clutter mitigation for through-the-wall radar

imaging using joint Bayesian sparse signal recovery,” Proc.

IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp.

7804–7808, Florence, Italy, 4–9 May 2014.

[14] F. Ahmad, J. Qian, and M. G. Amin, “Wall clutter mitigation

using discrete prolate spheroidal sequences for sparse recon-

struction of indoor stationary scenes,” IEEE Trans. Geoscience

and Remote Sensing, vol. 53, no. 3, pp. 1549–1557, March

2015.
[15] F. Ahmad and M. G. Amin, “Partially sparse reconstruction of

behind-the-wall scenes,” Proc. SPIE Compressive Sensing, pp.

83 650W.1–83 650W.9, Maryland, USA, 23–27 Apr. 2012.

[16] Y.-S. Yoon and M. G. Amin, “Spatial filtering for wall-clutter

mitigation in through-the-wall radar imaging,” IEEE Trans.

Geoscience and Remote Sensing, vol. 47, no. 9, pp. 3192–

3208, Sept. 2009.

[17] F. H. C. Tivive and A. Bouzerdoum, “An improved SVD-

based wall clutter mitigation method for through-the-wall radar

imaging,” Proc. IEEE Workshop on Signal Processing Ad-

vances in Wireless Communications, pp. 430–434, Darmstadt,

Germany, 16–19 June 2013.

[18] F. H. C. Tivive, A. Bouzerdoum, and M. G. Amin, “A subspace

projection approach for wall clutter mitigation in through-the-

wall radar imaging,” IEEE Trans. Geoscience and Remote

Sensing, vol. 53, no. 4, pp. 2108–2122, Apr. 2015.

[19] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal

component analysis?” Journal of the ACM, vol. 58, no. 3, pp.

1–37, May 2011.

[20] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Will-

sky, “Rank-sparsity incoherence for matrix decomposition,”

SIAM Journal on Optimization, vol. 21, no. 2, pp. 572–596,

June 2011.

[21] E. W. Andrew, C. S. Aswin, and R. Baraniuk, “SpaRCS: Re-

covering low-rank and sparse matrices from compressive mea-

surements,” Proc. Advances in Neural Information Processing

Systems, pp. 1089–1097, Granada, Spain, 12–17 Dec. 2011.

[22] K. Lee and Y. Bresler, “ADMiRA: Atomic decomposition for

minimum rank approximation,” IEEE Trans. Information The-

ory, vol. 56, no. 9, pp. 4402–4416, Sep. 2010.

[23] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal re-

covery from incomplete and inaccurate samples,” Applied and

Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–

321, May 2009.

[24] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compressive prin-

cipal component pursuit,” Information and Inference, vol. 2,

pp. 32–68, Mar. 2013.

[25] J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresh-

olding algorithm for matrix completion,” SIAM Journal on Op-

timization, vol. 20, no. 4, pp. 1956–1982, Mar. 2010.

[26] I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresh-

olding algorithm for linear inverse problems with a sparsity

constraint,” Communications on Pure and Applied Mathemat-

ics, vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

1416


