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ABSTRACT
In this paper, we consider the reconstruction of a high-
dimensional seismic volume with randomly missing traces.
Seismic data in the frequency-space domain are represented
via a high-order tensor. Applying the parallel matrix factor-
ization model to the underlying seismic tensor, we propose
an iterative approximate message passing (AMP) approach
to seismic data interpolation based on loopy belief propaga-
tion. In particular, we extend the bilinear generalized AMP
(BiG-AMP) approach to incorporate parallel low-rank ma-
trix factorizations by using a “turbo” framework, enabling
iterative message passing between the subgraphs of the all-
mode unfoldings of the seismic tensor. The computational
complexity of our algorithmic framework is low and scales
linearly with the data size. Simulation results with synthetic
seismic data suggest that the proposed algorithm yields better
reconstruction performances relative to existing methods.

1. INTRODUCTION

Due to physical limitations and economic constraints, only
a fraction of the prestack traces can be obtained in practical
realities of acquiring seismic data. Reconstruction of the
seismic data from incomplete spatial measurements is one of
the key issues in seismic data acquisition. In frequency-space
domain, high-dimensional seismic data can be described as
a low-rank fifth-order tensor (including one frequency (or
time) dimension and four spatial dimensions) in which a
large amount of structure that can be exploited in order to
recover the original, fully-sampled data effectively.

Given the high dimensionality and huge size of the seis-
mic volume, recent research on seismic data acquisition
has explored the use of dimensionality reduction (or rank-
reduction) of tensor to recover the missing traces and increase
the signal-to-noise-ratio of the seismic data effectively. For
example, [1] considers using the high-order singular value
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decomposition (HOSVD) based on the well-known Tucker
model to implement rank reduction of the tensor. [2] proposes
a tensor nuclear norm (TNN) algorithm, as a variant of the
tensor singular value decomposition (tSVD), by relaxing the
complexity measure term to a nuclear norm. [3] employs a
parallel matrix factorization (PMF) model which then be for-
mulated as a convex problem and solved using the alternating
least squares method. [4] considers a convex optimization
problem by penalizing the all-mode unfoldings of the tensor
to have a low-nuclear norm, and applies the alternating di-
rection method of multiplier (ADMM) method to solve the
problem.

While a lot of approaches on tensor completion have been
proposed and achieved considerably smaller reconstruction
errors than before, ours is based on the approximate message
passing (AMP) framework, an approximation of loopy belief
propagation (BP) [5] that was recently developed to tackle
generalized inference of linear inverse [6] and bilinear inverse
(or matrix factorization) [7] problems. The AMP framework
has been shown to perform rapid and highly accurate prob-
abilistic inference with linear complexity scaling in the di-
mension of the data [6]. In this paper, we propose a novel
approximate message passing (AMP)-based algorithm, called
tensor completion AMP (TC-AMP), that leverages the recent-
ly proposed AMP-based “turbo” framework [8] to perform
inference on a probabilistic model enforcing parallel matrix
factorizations of the tensor. Specifically, we formulate our
problem in a probabilistic way by simultaneously perform-
ing low-rank matrix factorizations to the all-mode unfoldings
of the tensor. Then we partition the factor graph into sev-
eral identical subgraphs and employ the bilinear generalized
AMP (BiG-AMP) approach [7] to each subgraph, which en-
ables soft posterior message to iteratively update between the
modules. The key to our approach lies in combining the “tur-
bo” framework of [8], where all the subgraphs corresponding
to different low-rank matrix factorization modules are con-
nected in the common hidden variable nodes and inference is
performed on the augmented factor graph.

2. PROBLEM FORMULATION

The prestack seismic volume is generally represented by four
spatial dimensions and frequency (or time), and has an ex-
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Fig. 1. The factor graph for the low-rank matrix factorization
model with N = 3, I1 = I2 = I3 = 2, and R1 = R2 =
R3 = 1.

tremely large data size and enormous redundancy. Therefore,
we can safely identify the seismic data by a fifth-order (ap-
proximately) low-rank tensor D ∈ RI1×...×IN with elements
Di1,...,in , where i1, ..., in are the indices for the frequency-
space coordinates, N = 5 represents the order of the seismic
tensor. In our problem, the goal is to recover D from noisy
and partial observations B = PΩ(D + W), where W is an
additive white Gaussian noise (AWGN) tensor with unknown
variance τw, Ω is the index set of observed entries, and PΩ

keeps the entries in Ω and zeros out others.
Similar to the PMF model [3] which simultaneously

performs low-rank matrix factorizations to the all-mode
unfoldings of tensor, we first denote the mode-n matri-
cization (or unfolding) of D, D(n), as a matrix with the
dimensions given by n reshaped along the rows, and the
other dimensions reshaped into the columns of the ma-
trix, i.e., D(n) ∈ RIn×

∏
i6=n Ij . Then, we apply low-rank

matrix factorization to each mode unfolding of D by de-
composing D(n) as the product of two hidden variable
matrices, i.e., D(n) , X(n)Y(n), where X(n) ∈ RIn×Rn ,
Y(n) ∈ RRn×

∏
i6=n Ij , Rn � min(In,

∏
i 6=n Ij) is the un-

known rank of D(n). Then, we have the following formula-
tion:

B(n) = PΩ(D(n)+W(n)) = PΩ(X(n)Y(n)+W(n)), ∀n (1)

where B(n) and W(n) are the mode-n unfolding of B and W ,
respectively.

For mode-n unfolding of D, assuming independent en-
tries for X(n) and Y(n), we obtain the separable probability
density functions (PDFs) of X(n) and Y(n) as

p(X(n))=
∏

in,rn
p(x

(n)
inrn

)=
∏

in,rn
N (x

(n)
inrn

; x̂n, ν
xn), (2)

p(Y(n))=
∏

rn,tn
p(y

(n)
rntn)=

∏
rn,tn
N (y

(n)
rntn ; 0, 1), (3)

where {x(n)
inrn
}∀in,rn are assumed to be i.i.d. Gaussian

with unknown mean x̂n and variance νxn in (2), in ∈
{1, 2, ..., In}, rn ∈ {1, 2, ..., Rn}, and tn ∈ {1, 2, ...,

∏
i 6=n Ij}.
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Fig. 2. The subgraph (painted blue in Fig. 1) for the low-
rank matrix factorization of mode-1 unfolding of D withN =
3, I1 = I2 = I3 = 2, and R1 = R2 = R3 = 1.

N (x; x̂, νx) denotes the PDF for a Gaussian random variable
x with mean x̂ and variance νx. To avoid ambiguity and
the unnecessary model parameters update, we assume that
{y(n)

rntn}∀rn,tn follow i.i.d. Gaussian distribution with zero
mean and unit variance in (3). Following [7], due to the as-
sumption of possibly incomplete AWGN (PIAWGN) in (1),
the likelihood function of D(n) has the form

p
(
b
(n)
intn

∣∣∣d(n)
intn

)
=

N
(
b
(n)
intn

; d
(n)
intn

, τω
)

(in, tn) ∈ Ω,

1
b
(n)
intn

(in, tn) /∈ Ω,

(4)
where 1b denotes a point mass at b = 0.

3. THE TC-AMP ALGORITHM

We aim at estimating D from noisy and partial observa-
tions B of the low-rank matrix factorizations form D(n) ,
X(n)Y(n),∀n. As describe in Section 2, for a N -way tensor,
we have

D ∆
= fold1(X(1)Y(1)) = ... = foldN (X(N)Y(N)), (5)

where we define D = foldn(D(n)) = foldn(X(n)Y(n)), n ∈
{1, ..., N}. With the problem formulation in (1) and (5), our
proposed method is to maximize the following posterior joint
distribution

p(X(1),Y(1), ...,X(N),Y(N) |B )

=
∏

n
p(X(n),Y(n) |B )

=
∏

n
p(B

∣∣∣X(n)Y(n) )p(X(n),Y(n))/p(B)

∝
∏

n
p(B

∣∣∣X(n)Y(n) )p(X(n))p(Y(n)),

(6)

where ∝ denotes equality up to a normalizing constant scale
factor. Due to the exact inference of marginalizing (6) is typ-
ically intractable, we propose to solve an alternative problem
that partitions the global factor graph (as shown in Fig. 1)
into N identical bilinear subgraphs that mainly require local
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information to complete their tasks. Specifically, each sub-
graph corresponds to a module that produces a posterior esti-
mate of D by considering maximizing its local posterior joint
distribution, i.e., for each unfolding D(n), n ∈ {1, ..., N}, the
posterior joint distribution of the local random variables can
be factored as follows:

p(X(n),Y(n) |B )

∝ p(B
∣∣∣X(n)Y(n) )p(X(n))p(Y(n))

=
∏
in,tn

p
(
b
(n)
intn

∣∣∣d(n)
intn

)
×
∏
in,rn

p(x
(n)
inrn

)×
∏
rn,tn

p(y
(n)
rntn),

(7)

yielding the bilinear factor graph in Fig. 2, where circles de-
note random variables and squares denote posterior factors.
Each factor node represents the conditional probability dis-
tribution between all variable nodes it connected [5]. In our
case,N independent bilinear inverse problems are considered
by performing the BiG-AMP approach [7] in parallel. Then,
an efficient “turbo” framework [8] is used, i.e., after obtain-
ing each subgraph’s posterior beliefs by performing the BiG-
AMP approach, the prior beliefs of each subgraph are updated
using the posterior beliefs passed from other subgraphs, then
vice versa and repeat.

For each subgraph, given the bilinear construction of the
factor graph in Fig. 2, we employ the BiG-AMP approach
to the matrix completion problem and obtain the canonical
sum-product BP iterative equations [5],

∆
(j)
dintn←xinrn

=
1

C
p(xinrn)

∏
b 6=tn

∆
(j)
dinb→xinrn

, (8)

∆
(j+1)
dintn→xinrn

=
1

C

∫
{xinc}c 6=rn

,{yrntn}∀rn

{∏
rn

∆
(j)
dintn←yrntn

∏
c6=rn

∆
(j)
dintn←xinc

p(bintn |
∑
rn

xinrnyrntn)

 , (9)

∆
(j)
dintn←yrntn

=
1

C
p(yrntn)

∏
h 6=in

∆
(j)
dhtn→yrntn

, (10)

∆
(j+1)
dintn→yrntn

=
1

C

∫
{xinrn}∀rn,{yetn}e6=rn

∏
e 6=rn

∆
(j)
dintn←yrntn

∏
rn

∆
(j)
dintn←xinrn

p(bintn |
∑
rn

xinrnyrntn)

}
, (11)

where constant C is an arbitrary normalization constant.
∆a→b denotes a message pass from some variable node a
(factor node p(a)) to its adjacent factor node p(b) (variable
node b) in the factor graph. j is the local (intra-module) it-
eration index. For simplicity, here we have omitted the mark
of mode-n, (n), in all the variables, such as d(n)

intn
, x

(n)
inrn

, and

y
(n)
rntn . Using Gaussian and Taylor-series approximations for

(8)-(11), we then obtain three sets of approximately Gaussian

posterior messages, {∆dintn
}∀in,tn , {∆xinrn

}∀in,rn , and
{∆yrntn

}∀rn,tn [7]. In particular,

∆dintn
=p(bintn|dintn)

∫
{xinrn,yrntn}∀rn

∏
rn

∆dintn←yrntn
∆dintn←xinrn

∝ p(bintn |dintn)N (dintn ; q̂intn , ν
q
intn

), (12)

where the parameters q̂intn and νqintn are obtained after the
BiG-AMP iteration converges.

Then the posterior estimations of {dintn}∀in,tn are facili-
tated by the following prior-dependent integrals

d̂intn =

∫
dintn∆dintn

ddintn , (13)

νdintn =

∫
d2
intn∆dintn

ddintn − d̂2
intn . (14)

To enable effective implementation of “turbo” iteration,
the posterior estimations of D(n) obtained from the mode-n
module is fed randomly to the other module as the a priori
input, i.e., for a mode-n module, we use the updated prior
distribution of D(n), which is given by

p(d
(n)
intn

) = N (d
(n)
intn

; d̂
(∼n)
intn

, ν
d (∼n)
intn

), (15)

instead of the likelihood function of D(n) in (4), where d̂(∼n)
intn

and νd (∼n)
intn

are obtained from an arbitrarily module except
the mode-n module.

Now we summarize the TC-AMP algorithm as follows:
beginning at the initial iteration index, i = 1, the pro-
posed algorithm first performs the BiG-AMP based on the
priors and likelihood of (2)-(4) for N subgraphs in paral-
lel. Then, for i > 1, the converged outgoing messages
{d̂(n)

intn
, ν

d (n)
intn
}∀in,tn , n ∈ {1, ..., N} obtained from the

mode-n module are treated as priori parameters for the other
module and the updated prior distribution in (15) are used
for all modules instead of the likelihood distribution in (4).
This iteration continues until either a stopping condition or a
maximum number of allowable iterations is reached. Finally,
we obtain the final estimation of D takes the form

D̂ =
∑

n
αnfoldn(D̂

(n)
), (16)

where the weight parameters α1, ..., αN are set as

αn =

∥∥∥PΩ(foldn(D̂
(n)

))−B
∥∥∥−1

F∑N
k=1

∥∥∥PΩ(foldk(D̂
(k)

))−B
∥∥∥−1

F

. (17)

It is worth to note that our proposed algorithm described
before relies on the specification of ranks {Rn}∀n and mod-
el parameters {τw, {x̂n, νxn}∀n} which may not be known
accurately in practical interpolation of seismic data. Here
we adopt the “penalized log-likelihood maximization” rank
selection strategy from [7] and the expectation-maximization
(EM)-based method [6], [7], [9] to tune these parameters
adaptively in each inter-module iteration. Since these two
mechanisms can be performed directly in closed-form, and
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thus do not significantly increase the complexity of the pro-
posed algorithm.

In addition, the priors in (2),(3),(15) and likelihood func-
tion in (4) are all Gaussian, and hence, all expressions of the
proposed algorithm have straightforward analytical expres-
sions, and the computational complexity in each iteration is
dominated by matrix multiplications [7], [9]. The complex-
ity analyses in [7] indicate that, for a mode-n module, the
BiG-AMP algorithm can be completed inO(Rn

∏
i Ii) scalar

multiplies per iteration. Thus, the complexity of each iteration
of the proposed algorithm is bounded by O(

∑
k Rk

∏
i Ii) s-

calar multiplies. Furthermore, in our simulation, we find that
the proposed algorithm shows a good convergence in a small
number of inter-module iterations (typically 3 to 5), imply-
ing that the total complexity is bounded by O(

∑
k Rk

∏
i Ii)

scalar multiplies.

4. PERFORMANCE ON SYNTHETIC SEISMIC DATA

In this section, we present synthetic seismic data results to
compare the performance of the proposed TC-AMP algorithm
with the TMac [3] and nuclear norm minimization (NNM) [4]
algorithms.

The original seismic data D is of size 512 × 16 × 16,
i.e., the spatial size of the data is 16× 16 with 512 time sam-
ples per trace. We run different algorithms mentioned above
to recover D with 50%, 60%, ..., 90% traces missing. White
Gaussian noise was added to achieve SNR = 30dB. The
error in recovery is measured via the reconstruction quality

Q = 10log10(‖D‖2F
/∥∥∥D̂ −D

∥∥∥2

F
), where D and D̂ repre-

sent the true noise-free complete data and reconstructed data,
respectively. Fig. 3 shows the reconstruction quality averaged
over 100 realizations, as a function of the percentage of miss-
ing traces. From Fig. 3 we see that when the percentage of
missing traces is more than 70%, the proposed TC-AMP algo-
rithm clearly provides the best recovery performance. In ad-
dition, the reconstruction qualities obtained by the proposed
TC-AMP and the TMac algorithm perform much better than
the NNM method.

A small subset of visual results of the recovered seismic
data by various algorithms are presented in Fig. 4. As seen
in Fig. 4, the NNM method shows the worst perceptual re-
sults than the TC-AMP and TMac algorithms. Obviously, our
proposed algorithm preserves more fine details than the other
competing methods.

5. CONCLUSION
We studied the problem of interpolating seismic data in the
case of missing traces, assuming that the seismic tensor sat-
isfies the PMF model. Then, we proposed an AMP-based al-
gorithm, namely TC-AMP, to the tensor completion based on
loopy BP. Finally, the numerical results with synthetic seismic
data were presented to confirm the performance advantage of
our proposed TC-AMP algorithm.

50 55 60 65 70 75 80 85 90
0

2

4

6

8

10

12

14

16

18

Decimation [%]

R
ec

on
st

ru
ct

io
n 

qu
al

ity
 Q

 

TC−AMP
TMac
NNM

Fig. 3. Reconstruction qualityQ versus percentage of missing
traces for the TC-AMP, TMac, and NNM methods.

(a) Original data

T
im

e 
(S

)

(b) Decimated data

Recovered data

T
im

e 
(S

)

(c) TC−AMP
 Difference

Recovered data

T
im

e 
(S

)

(d) TMac
Difference

T
im

e 
(S

)

Recovered data
(e) NNM

Difference

Fig. 4. A small subset of one slice of the data reconstruction
results. SNR = 20dB. (a) The raw undecimated data, (b)
90% of the traces were removed at random. (c, d, and e) are
the recoveried results (left) and errors results (right) using the
TC-AMP, TMac, and NNM, respctively.

1405



6. REFERENCES

[1] N. Kreimer, and M. D. Sacchi, “A tensor higher-order sin-
gular value decomposition for prestack seismic data noise
reduction and interpolation,” Geophysics, vol. 77, no. 3,
pp. 113–122, May 2012.

[2] G. Ely, S. Aeron, N. Hao, and M. E. Kilmer, “5D and
4D pre-stack seismic data completion using tensor nu-
clear norm (TNN),” in Proc. SEG Annual Meeting, pp.
22–27, Houston, TX, Sep. 2013

[3] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix fac-
torization for low-rank tensor completion,” preprint. [On-
line]. Available: http://arxiv.org/pdf/1312.1254v2.pdf.

[4] N. Kreimer, A. Stanton, and M. D. Sacchi, “Tensor com-
pletion based on nuclear norm minimization for 5D seis-
mic data reconstruction,” Geophysics, vol. 78, no. 6, pp.
273–284, Nov. 2013.

[5] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor
graphs and the sum-product algorithm,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 498–519, Feb. 2001.

[6] S. Rangan, “Generalized approximate message passing
for estimation with random linear mixing,” in Proc. IEEE
Int. Symp. Inf. Theory, pp. 2168–2172, Saint Petersburg,
Russia, Aug. 2011.

[7] J. T. Parker, P. Schniter, and V. Cevher, “Bilinear gener-
alized approximate message passing–Part I: Derivation,”
IEEE Trans. Signal Process., vol. 62, no. 22, pp. 5839–
5853, Nov. 2014.

[8] P. Schniter, “Turbo reconstruction of structured sparse
signals,” in Proc. Conf. Inform. Science & Syst., Prince-
ton, NJ, Mar. 2010.

[9] J. Ziniel and P. Schniter, “Efficient high-dimensional in-
ference in the multiple measurement vector problem,”
IEEE Trans. Signal Process., vol. 61, no. 2, pp. 340–354,
Jan. 2013

1406


