
CONTEXT ADAPTIVE THRESHOLDING AND ENTROPY CODING FOR VERY LOW
COMPLEXITY JPEG TRANSCODING

Xing Xu†, Zahaib Akhtar†, Ramesh Govindan†, Wyatt Lloyd†, Antonio Ortega‡

† Department of Computer Science, ‡ Department of Electrical Engineering
University of Southern California

ABSTRACT

The ever increasing quantity of user generated photos, nearly all
compressed using JPEG, has created a growing storage burden on
photo storage and sharing services. This creates the need for com-
pression techniques that take JPEG compressed images as inputs.
In this paper we propose two novel very low complexity codecs,
ROMP and L-ROMP to recompress JPEG photos, achieving in-
creased coding efficiency by making use of very large entropy cod-
ing tables. ROMP is a lossless JPEG recompression codec that
achieves 15% average gains over JPEG, while L-ROMP is a lossy
codec that can achieve 29% average compression gains over JPEG,
by applying coefficient thresholding based on a perceptual criterion
to a JPEG image before using the entropy coding of ROMP.

Index Terms— JPEG, image compression

1 Introduction
With the wide availability of digital cameras, users are taking more
photos, at higher resolution and quality, than ever before. Huge vol-
umes of images are then stored, and shared with other users, leading
to a dramatic growth in the popularity of services such as Facebook,
Flickr, and Instagram that provide image storage. For the purpose of
this paper we distinguish archival from non-archival photo storage
services. In the former, captured images are stored at their orig-
inal (very high) quality settings, providing essentially extended or
back-up storage for digital cameras. Instead, in the latter, images
are stored in order to be shared; e.g., blogs, online social networks,
email, chat, etc. As an example of such a non-archival storage, Face-
book alone had 350 million photo uploads per day and stored over
250 billion photos in 2013 [1]. In non-archival applications photos
are often resized and stored at lower quality in order to reduce band-
width and storage needs. Still, given the huge volumes involved,
photo storage costs can represent a significant burden on these ser-
vices. Also, while theoretically users could choose to remove these
images some time after they have been made shared, in practice,
many users keep them there indefinitely, adding to the storage costs.

In this paper we propose techniques to decrease significantly
the image storage requirements, with minimum impact on quality
and access latency. We focus on non-archival storage services.
In this type of service, when a user uploads photos, a transcoder
typically reduces the photo file-size by resizing, reducing quality
(e.g., through re-quantization), stripping off headers or a combi-
nation thereof. Some services may also transcode images to other
more storage-efficient formats such as WebP or JPEG2000. When
a user sends a request to download a previously uploaded photo,
the transcoder converts the photo from the format used for storage
in backend, to one suitable for delivery to a user device (adjusting
image size and quality as needed).

Our proposed approach specifically targets reduction of storage
costs, but also leads to additional benefits (e.g., reduction of inter-
nal bandwidth required for transferring imagesa) and is in general
designed so that it can be seamlessly combined with existing sys-
tems. This has three major implications. First, as JPEG[3] is the
dominant format for image capture and sharing, our techniques will
take JPEG images as input and provide JPEG images as decoded
output. Second, most systems already transcode uploaded images to
lower quality. Thus, we will apply our method to these lower qual-
ity images, rather than to the high quality JPEG images generated
by cameras. Third, we will aim at very low complexity, in order
to minimize latency on the download path and to lower transcoding
cost and increase scalability in large scale systems.

Two types of re-encoding approaches could be considered,
namely, i) techniques closely associated to JPEG, usually providing
lossless performance, e.g., JPEG Progressive, JPEG Arithmetic or
PackJPG, ii) alternative coding techniques based on more recently
developed codecs, such as WebP or JPEG2000. We do not con-
sider the latter approaches because these codecs are not as widely
supported as JPEG among typical client devices, and would require
excessive transcoding overhead (e.g., more than a second) if they
were used solely for storage (and JPEG images had to be sent to the
client devices). This will be discussed in Section 4.

Our approach leverages two unique attributes of non-archival
photo storage. First, the encoder (at image upload) and decoder (at
image download) are co-located and are both part of the storage in-
frastructure; second, constraints on memory usage can be relaxed.
Based on these two facts, we introduce a novel JPEG recompression
technique, ROMP (Recompression Of Many Photos) that is a direct
extension of JPEG, but makes use of a large number of context-
dependent Huffman tables. Because encoder and decoder are co-
located, these tables can be stored along with the images, leading
a negligible storage overhead in a large scale system. These ta-
bles allow ROMP to trade-off runtime memory for encoding speed,
achieving some of the benefits of context adaptation but without the
complexity associated to techniques such as context adaptive arith-
metic coding.

To achieve additional gains, we also introduce L-ROMP
(Lossy-ROMP), a fast, lossy recompression technique. Traditional
recompression techniques (e.g., re-quantizing by changing JPEG’s
quality parameter) degrade image quality sub-optimally, especially
when incremental storage savings are required (due to rounding
effects when applying successive quantization). L-ROMP is based
on DCT coefficient thresholding (setting some of the coefficients
to 0), has very low complexity and allows full control of the addi-

aA companion submission explores the system level performance and
benefits of our approach [2], while in this paper we focus on the image com-
pression tools

1392978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Fig. 1. ROMP Encoding Architecture

tional distortion introduced. We introduce techniques for L-ROMP
that use an approach based on visual perception criteria in order to
choose the thresholds in order to minimize the perceptual impact of
thresholding.

To evaluate ROMP and L-ROMP, we perform experiments on
several image sets and show that ROMP reduces storage require-
ments by 15% beyond the JPEG standard compression while hav-
ing low decompression time (30-50ms). Its performance dominates
all image compression techniques we have been able to find: its
competitors either have much higher decoding complexity, or much
lower compression gain. L-ROMP can, in some cases, reduce stor-
age requirements by 29% with a comparable perceptual quality.

There exist some prior works that focus on lossless compres-
sion [4, 5, 6, 7, 8]. Compared to these schemes, ROMP, can achieve
competitively high compression at very low complexity. Transcod-
ing from JPEG to other compressed formats, such as WebP [9] or
JPEG2000 [10] normally introduces high complexity due to trans-
forming to pixel domain and encoding to the new format. L-ROMP
avoids these conversions and always stays in DCT domain, which
has advantages in terms of complexity. As will be described, suc-
cessive changes of quantization parameters in JPEG can introduce
significant quality degradations [11], L-ROMP, instead, only intro-
duces small and perceptually lossless changes. L-ROMP is inspired
by prior work on thresholding which optimizes the rate/distortion
tradeoff [12, 13, 14], but is simpler and more computationally effi-
cient.

2 Context-Adaptive Lossless Coder
In order to satisfy the system design constraints, ROMP makes use
of a large set of entropy coding tables generated from a collection
of images, where each of the tables is optimized for a specific con-
text. Our approach proceeds block by block and does not involve
any transformations or re-orderings of DCT coefficients, essentially
using entropy tables that have exactly the same structure as that of a
typical JPEG entropy coding table. This ensures that the complexity
of the system is very low (see Fig. 1): essentially equivalent to JPEG
entropy decoding followed by JPEG entropy coding.

As will be discussed next, in order to improve coding efficiency
we take advantage of statistical dependencies that are exploited by
other mechanisms (e.g., intra prediction, adaptive arithmetic coding)
in state-of-the-art codecs. The key difference is that by exploiting
these dependencies using a large number of fixed pre-computed ta-
bles (which increases memory requirements for the codec) we have
significantly lower complexity than competing approaches. Note
that this increase in memory is reasonable within a high performance
photo sharing system, where there are essentially few constraints on
memory usage.

Context-Sensitive Coding. ROMP exploits the freedom to have
large coding tables by designing context-sensitive coding tables that
result in losslessb compression. Recall that JPEG’s Huffman tables
are used to code runsizes, that is, information about a run of consec-

bLossless with respect to the uploaded JPEG image.

utive zeros followed by a non-zero coefficient of a given size. Huff-
man codes for these runsizes are designed based on their expected
frequency of occurrence based on average image statistics. ROMP
learns context-sensitive Huffman tables by learning the empirical
probability of occurrence of runsizes from a corpus of images. This
learning leverages the availability of such corpora in a large-scale
photo sharing service. A Huffman table will contain the set of vari-
able length codes assigned to each of the possible runsizes values,
and each table will be optimized for a context based on position and
energy information.

Position Dependence. Specifically, we consider position depen-
dent tables, so that in principle a different table could be used for
each of DCT coefficient position along the zig-zag scan. This al-
lows us to use codes that exploit the fact that longer run-lengths are
more likely as the frequency increases. This follows from the fact
that, for natural images, it is known that non-zero coefficients are
increasingly unlikely at higher frequencies [15].

Energy Dependence. Furthermore, we also take into account
energy-dependence by creating additional contexts (for each po-
sition) based on the energy of other coefficients within the block
(intra-block energy) and of neighbouring blocks (inter-block en-
ergy). Using intra-block energy provides additional information
beyond position alone, e.g., in a block with less accumulated energy
up to position p− 1, the coefficient at position p is likely to be
smaller. Inter-block energy exploits similarity between neighbour-
ing blocks and is likely to be more effective for high resolution
images, for which an 8× 8 represents a relatively small portion of
the image and neighbouring blocks are more likely to be similar.

To reduce the computation cost, for a given runsize that occurs
at zigzag position p of the n-th block, we use the average of the
observed coefficient sizes in a block as an estimate of intra-block
energy:

intra(n, p) =
1

p−1

p−1

∑
i=1

SIZE(bn(i))
maxSIZE(i)

(1)

where bn denotes the n-th block, and bn(i) denotes the coefficient at
position i, SIZE(·) denotes the bits required to represent the ampli-
tude of the coefficient, maxSIZE(i) is the observed maximum coeffi-
cient size for position i of images in the training set. Similarly, the
inter-block energy value is estimated based on the average sizes of
coefficients in nearby blocks: F nearby zigzag positions in Bc adja-
cent prior blocks (coefficients at positions p, p+1, · · · , p+F−1 of
blocks bn−1, bn−2, · · · , bn−B):

inter(n, p) =
1

B ·F

n−1

∑
i=n−B

p+F−1

∑
j=p

SIZE(bi(j))
maxSIZE(j)

(2)

Learning the Context-Sensitive Tables. ROMP uses a triple <
p, i,e > to define context: zigzag position p, intra-block energy i
and inter-block energy e. It generates a Huffman table for each of
these contexts from a training set of images. For runsize that occurs
in any image in the training set, ROMP first determines its context
triple and then gathers it together with other runsizes belonging to
the same context. After gathering all the runsizes for each context,
ROMP can generate a table for this context based on the number of
occurrences of each, including runsizes that have 0 occurrence; if all
the runsizes in one context are 0 occurrence, then a default Huffman
table will be used. ROMP pre-defines 20 different energy levels for
both intra-energy and inter-energy, which leads to ~64d×20×20 =
25600 different contexts and Huffman tables to be learned.e These

cWe use F = 5 and B = 3 in ROMP.
dThere are 64 different zigzag positions in a 8×8 block.
eThese tables take up less than 7MBs of the memory, a negligible memory

usage increment for modern machines.

1393

tables are quite different: take the example of End-Of-Block (EOB)
symbol, which always takes 4 bits in default JPEG huffman table,
ROMP’s table of context < 5,0,0 > uses 1 bit for it, while context
< 2,5,9> uses 9 bits! These different Huffman tables allow ROMP
to achieve better compression over standard JPEG.

Using Context-Sensitive Tables for En-/Decoding. Given the
learned Huffman tables, the en-/decoding of ROMP is easy: ROMP
parses the decoded symbols and for every runsize it computes the
corresponding triple < p, i,e >, based on causal information, and
uses the table corresponding to that context to encode runsize.

In summary ROMP operates as follows (Fig. 1): 1) From a
training set of images, ROMP learns a Huffman table for each
unique context (i.e., for each unique combination of position, intra-
and inter-block energy), 2) When an image is uploaded, ROMP
decodes it using default JPEG table, then uses the learned context-
adaptive entropy tables to re-code the image and 3) Before delivering
the image to the user, ROMP reverses its context-adaptive entropy
code, and then applies the default JPEG entropy code.

3 Fast Near-Lossless Thresholding
ROMP’s entropy coder is lossless with respect to the uploaded
JPEG. In this section, we describe L-ROMP, which introduces loss
(or distortion) in uploaded images as a way of achieving further
savings in photo storage.

As discussed previously, users upload high quality JPEG im-
ages and many photo sharing services, e.g., Facebook, change the
JPEG quality parameter (QP) to a lower level in order to ensure
predictable storage usage, a step that introduces additional distor-
tion [11]. Fig. 2 shows how generating a JPEG image with QPB
in two steps (i.e., encoding first with QPA and then requantizing to
QPB) can be significantly worse than encoding directly the original
with QPB. In Fig. 2, “raw” corresponds to encoding the original
raw image (raw→ QPB), while “JPEG” corresponds to re-encoding
a JPEG image (raw→ QPA → QPB). This penalty arises from the
rounding effects when a quantized coefficient is first reconstructed,
then divided by a different quantization parameter and again quan-
tized.

L-ROMP avoids re-quantizing coefficients, but introduces dis-
tortion by carefully setting some non-zero (quantized) coefficients to
zero, a specific example of thresholding [12]. While more general
forms of thresholding have been explored in other contexts, we are
not aware of it being considered as an alternative to re-quantization
in large photo sharing services. The intuition behind thresholding
is that, by setting a well-chosen non-zero coefficient to zero, we de-
crease the number of runsizes to be encoded or generate an earlier
end of block, in both cases reducing the overall rate. Optimization of
coefficient thresholding has been considered from a rate-distortion
perspective in the literature [16, 12]. Here we use a simplified ver-
sion where only coefficients of size equal to 1 (i.e., 1 or −1) can be
removed. This means that the distortion increase for any coefficient
being removed will be the samef. Thus, we only need to decide if for
a given coefficient the bit-rate savings are sufficient to remove it. We
make the decision by introducing a rate threshold and only thresh-
olding a coefficient if the bits saving by doing so would exceed this
threshold.

However, setting too many coefficients to zero within a block
can introduce local artifacts (e.g., blocking). Thus, L-ROMP uses a

fNote that the actual MSE will be different if two coefficients have same
value 1, but different frequency weights in the quantization matrix. How-
ever, by ignoring this difference we take into account the different perceptual
weighting given to each frequency and obtain better perceptual quality.

perceptual threshold Tp that limits the percentage of non-zero coef-
ficients that will be set to zero. By doing this L-ROMP can guaran-
tee that the block-wise SSIM respect to the original JPEG is always
higher than 1− Tp

2−Tp
. For example, if we use Tp = 0.1 (i.e., we can

threshold at most 10% of the non-zero coefficients), then block-wise
SSIM metric is guaranteed to be higher than 0.947. The proof of
such bound is based on results from [17] and is omitted for brevity.

Finally, L-ROMP can be easily introduced into ROMP’s
pipeline: before applying the context-sensitive entropy coding,
L-ROMP’s thresholding can be applied to each block (Fig. 1). No
changes are required to ROMP’s entropy coder.

4 Evaluation
In this section, we evaluate ROMP and L-ROMP, by comparing
their compression and complexity performance to other state-of-the-
art alternatives. Our evaluations use an implementation of ROMP
and L-ROMP on top of libjpeg-turbo [18], a fork of the In-
dependent JPEG Group libjpeg [19] SIMD [20] accelerated C
library JPEG codec. Our implementation is optimized to reduce
complexity, for example, by caching intermediate results. We com-
pare ROMP and L-ROMP to all lossless JPEG codecs we are aware
of that have publicly available implementations, including JPEG
Standard, JPEG Optimized, JPEG Progressive, JPEG Arithmetic,
MozJPEG [21] and PackJPG [22, 8]. For lossy codecs, we include
WebP and JPEG2000 into comparison.

Our evaluation uses two sets of images. First we use the MIT-
Adobe FiveK Dataset [23], which contains 5000 photos in raw for-
mat taken by SLR cameras. We transcode them to quality parameter
75, at two resolutions: 1152×864 and 2048×1536, in order to sim-
ulate photos typically uploaded to photo sharing services. We also
use the Tecnick image set [24]: 100 images of maximum resolutions
1200×1200 in raw format (PNG). For ROMP and L-ROMP, we
randomly select a group of images for training and test on the rest of
the images, e.g., for FiveK sets, we train on 1,000 and test on 4,000
images.

We evaluate our recompression schemes and alternatives on two
metrics: compression ratio, and encoding/decoding time. Compres-
sion ratio is computed with respect to the original image’s size in
JPEG Standard: s−s′

s , where s′ is the size of an image generated by a
scheme and s is the file size of the image coded with JPEG. The en-
coding time is the time to recompress from JPEG and the decoding
time is the time to decompress back to JPEG.

Compression Ratios. Table 1 (left) shows the compression ra-
tio for all low complexity schemesg for FiveK image sets. We see
that ROMP provides the highest compression ratio among lossless
codecs. It achieves a 15% compression ratio over JPEG Standard.
L-ROMP achieves a 29% compression ratio. We further examine
the distribution of compression ratios of images and find that ROMP
provides a compression ratio over 15% for 95% of images while L-
ROMP provides a compression ratio over 28% for 95% of images.
This demonstrates both schemes provide good compression for al-
most all images on average.

We also evaluate using images of different resolutions and qual-
ity parameters, of the Tecnick image set. Table 1 (left) shows the
most common parameters: resolution of 1200×1200, and quality
parameter of 75. For ROMP and L-ROMP, we observe consis-
tent compression results as compared to FiveK image sets (15% and

g PackJPG, WebP and JPEG2000 are high complexity schemes that add
unacceptable latency to photo downloads, so we do not evaluate them for the
FiveK image sets.

1394

Compression Ratio (100%) Complexity (ms)

FiveK Tecnick Tecnick

1152 2048 Enc. Dec.

L-ROMP 28.00% 29.10% 28.04% 37 30
Lossy WebP N/A N/A 29.71% 288 371

JPEG2000 N/A N/A 28.34% 624 719

ROMP 15.44% 16.07% 15.02% 47 37
PackJPG N/A N/A 21.53% 168 178

Lossless Arithmetic 10.00% 11.50% 9.96% 40 40
MozJPEG 5.90% 6.41% 5.85% 209 25
Progressive 4.60% 4.90% 4.67% 91 26
Optimized 2.49% 2.97% 1.71% 23 15

Table 1. Left: Compression ratio over JPEG Standard for FiveK
image sets (1152×864 and 2048×1536, QP=75) for low complexity
schemes, and for Tecnick image set (1200×1200, QP=75). Right:
Encoding and decoding complexity comparison on Tecnick image
set (1200×1200, quality parameter is 75).

150 200 250 300 350
(a) Filesize (KB)

32

33

34

35

36

37

38

39

PS
N
R
 (
d
B
)

130 140 150 160 170 180 190 200
(b) Filesize (KB)

.988

.990

.992

.994

.996

.998

M
S
-S
S
IM

L-ROMP Re-quantize(Raw) Re-quantize(JPEG)

Fig. 2. Rate/distortion performance of L-ROMP, compared to re-
quantization from raw image and from JPEG image using Tecnick
images of 1200×1200. (a): Using PSNR as the quality metric, and
showing performance on JPEG images of four QPs (70,80,86,90).
(b): Using MS-SSIM metric, and focusing on JPEG images of
QP=75; “o” marks the perceptually lossless setting of L-ROMP.

29%). For lossy alternatives, to make the comparison fair, we com-
pare the compression ratio of the same achieved PSNR: we tune
each lossy alternative’s “quality degradation” parameter to provide
the same PSNR of L-ROMP’s perceptually lossless setting. Note
that in all cases images are first encoded using JPEG and then re-
encoded with one of the algorithms under consideration in order to
mimic the settings in a photo sharing system where JPEG images
are uploaded. WebP and JPEG2000 achieve similar compression ra-
tios compared to L-ROMPh, but with unacceptably high complex-
ity as will be discussed next. In terms of lossless performance, we
see that ROMP’s compression ratio is over 15%; more importantly,
ROMP’s compression ratio increases as the quality parameter in-
creases beyond 75, achieving up to 7% higher compression gain than
JPEG Arithmetic, and 10% higher compression than Progressive
and MozJPEG: given the trend towards higher quality images, this
is a desirable property. PackJPG has higher compression gain, but
its complexity is also significantly higher.

Complexity. Table 1 (right) compares the encoding and decoding
complexity of ROMP, and L-ROMP against other alternatives. For
encoding time, ROMP is comparable to JPEG Arithmetic, and much
faster than other competitors. Compared to ROMP, L-ROMP’s ad-
ditional step of thresholding does not induce any extra complexity.
Decoding time is the more relevant metric for photo sharing services

hNote that L-ROMP’s algorithm is optimized for perceptual quality, not
PSNR. L-ROMP can be tuned to optimize for PSNR, and that would lead to
relatively higher compression ratio as compared to WebP and JPEG2000.

because it affects user-perceived delay. ROMP’s decoder is slightly
faster than JPEG Arithmetic, comparable to JPEG Progressive and
MozJPEG, and much faster than other schemes: 4.8× faster than
PackJPG, 10× faster than WebP and 20× faster than JPEG2000. L-
ROMP’s decoder is identical to ROMP, but after thresholding the
image becomes smaller, which makes it ~20% faster than ROMP, a
more significant advantage comparing to alternatives. Interestingly,
decoding is faster than encoding for most of the schemes; but for all
the high complexity alternatives (PackJPG, WebP, JPEG2000), the
decoding is actually slower.

This experiment shows that ROMP and L-ROMP achieve both
high compression ratios (15− 28%) and very low complexity (<
50ms encoding/decoding time for a 1200×1200 image). By con-
trast, the other high-compression scheme, PackJPG, has a compres-
sion ratio of 20%, but its decoding time is over 178ms, more than
5 times the complexity of ROMPi. Other lossy codecs have even
higher complexities. We also conduct experiments on higher quality
and resolution images to show how decoding time scales with each
of these factors. In general, we observe that schemes with low de-
coding complexity scale well, including ROMP and L-ROMP; the
decoding time for PackJPG, WebP and JPEG2000 scale poorly with
image size and image quality. For example, PackJPG takes 531 ms
to decode a 2048×1536 image, WebP needs 811 ms and JPEG2000
requires almost 3000 ms, limiting in photo sharing services unless
the client can decode these formats.

L-ROMP Quality Evaluation We start the quality evaluation
of L-ROMP, by comparing its rate-distortion performance to re-
quantizing, from raw image, and from images in JPEG (Fig. 2). We
use two different metrics: PSNR and MS-SSIM. For plot (a), L-
ROMP degrades PSNR more gracefully than simply re-quantizing
to change the JPEG quality parameter. This happens because the lat-
ter suffers from cumulative errors due to successive re-quantization.
We see that with conservative thresholds, L-ROMP’s curve is actu-
ally higher than re-quantizing from the raw image curve, illustrating
the efficiency of L-ROMP’s trading distortion for bits-saving. For
plot (b), we use MS-SSIM as the metric and we focus on transcod-
ing images of JPEG quality parameter of 75. As ROMP tracking the
curve of re-quantizing from the raw image closely, it offers further
validation for the assertion that L-ROMP provides a more graceful
degradation in quality. We also conducted a subjective evaluation
locally at our end, by developing a comparison tool [25] that can
choose thresholds and shows the image at the chosen setting as well
as size reduction. It allows us to compare resulting images from
conservative thresholds to aggressive thresholds, and figure out the
perceptually lossless setting that offers the most bits-saving. In
particular, we find that using rate threshold of 2.0 and perceptual
threshold of 0.4 provides maximum bits-saving without noticeable
quality distortion (marked in Fig. 2 (b) using “o”).

5 Conclusion
Motivated by the need for additional tools for managing storage in
large photo sharing services, this paper explores the problem of im-
age recompression and proposes two low complexity recompression
schemes, ROMP and L-ROMP, that produce perceptually lossless
compression with gains of 15-29% on a large corpus of images.
Compression gains of this magnitude can substantially reduce stor-
age requirements at these services; this brings collateral benefits in-
cluding internal bandwidth reduction, etc.

iIn our companion submission, [2] we show that this difference in com-
plexity can have a non-negligible impact on end-user latency

1395

6 References
[1] Facebook, Ericsson, and Qualcomm, A Focus on Efficiency,

September 2013.

[2] Xing Xu, Zahaib Akhtar, Ramesh Govindan, Wyatt Llyod,
and Antonio Ortega, “Reducing storage in large-scale photo
sharing services using low latency recompression,” in 2016
USENIX Annual Technical Conference (ATC 16), Denver, CO,
2016, USENIX Association.

[3] Gregory K. Wallace, “The JPEG Still Picture Compression
Standard,” in Commun. ACM, New York, NY, USA, Apr. 1991,
vol. 34, pp. 30–44, ACM.

[4] Ingo Bauermann and Eckehard Steinbach, “Further Lossless
Compression of JPEG Images,” in In Proceedings of PCS 2004
Picture Coding Symposium, CA, 2004.

[5] N. Ponomarenko, K. Egiazarian, V. Lukin, and J. Astola, “Ad-
ditional Lossless Compression of JPEG Images,” in Image
and Signal Processing and Analysis, 2005. ISPA 2005. Pro-
ceedings of the 4th International Symposium on, Sept 2005,
pp. 117–120.

[6] Mahmud Hasan, Kamruddin Md. Nur, and Hasib Bin Shakur,
“An Improved JPEG Image Compression Technique based on
Selective Quantization,” in International Journal of Computer
Applications, October 2012, vol. 55, pp. 9–14, Full text avail-
able.

[7] I. Matsuda, Y. Nomoto, K. Wakabayashi, and S. Itoh, “Loss-
less Re-encoding of JPEG Images Using Block-Adaptive Intra
Prediction,” in 16th European Signal Processing Conference
(EUSIPCO 2008), Lausanne, Switzerland, August 2008.

[8] M. Stirner and G. Seelmann., “Improved Redundancy Reduc-
tion for JPEG Files,” in Proc. of Picture Coding Symposium
(PCS 2007), Lisbon, Portugal, November 7-9, 2007, 2007.

[9] Google, WebP: A New Image Format for the Web, Available at
https://developers.google.com/speed/webp/.

[10] D.S. Taubman and M.W. Marcellin, “JPEG2000: Standard for
Interactive Imaging,” in Proceedings of the IEEE, Aug 2002,
vol. 90, pp. 1336–1357.

[11] Stéphane Coulombe and Steven Pigeon, “Low-Complexity
Transcoding of JPEG Images with Near-Optimal Quality Us-
ing a Predictive Quality Factor and Scaling Parameters,” in
Image Processing, IEEE Transactions on. 2010, vol. 19, pp.
712–721, IEEE.

[12] Kannan Ramchandran and Martin Vetterli, “Rate-Distortion
Optimal Fast Thresholding with Complete JPEG/MPEG De-
coder Compatibility.,” in IEEE Transactions on Image Pro-
cessing, 1994, vol. 3, pp. 700–704.

[13] Fu-Wing Tse and Wai-Kuen Cham, “Image Compression Us-
ing DC Coefficient Restoration and Optimal AC Coefficient
Thresholding,” in Circuits and Systems, 1997. ISCAS ’97.,
Proceedings of 1997 IEEE International Symposium on, Jun
1997, vol. 2, pp. 1241–1244 vol.2.

[14] Viresh Ratnakar and Miron Livny, “Extending RD-OPT with
Global Thresholding for JPEG Optimization,” in Proceedings
of the 6th Data Compression Conference (DCC ’96), Snow-
bird, Utah, March 31 - April 3, 1996., James A. Storer and
Martin Cohn, Eds. 1996, pp. 379–386, IEEE Computer Soci-
ety.

[15] Edmund Y Lam and Joseph W Goodman, “A Mathematical
Analysis of the DCT Coefficient Distributions for Images,” in
Image Processing, IEEE Transactions on. 2000, vol. 9, pp.
1661–1666, IEEE.

[16] Antonio Ortega and Kannan Ramchandran, “Rate-Distortion
Methods for Image and Video Compression,” in Signal Pro-
cessing Magazine, IEEE. 1998, vol. 15, pp. 23–50, IEEE.

[17] Sumohana S. Channappayya, Alan C. Bovik, Robert W. Heath
Jr., and Constantine Caramanis, “Rate Bounds on SSIM Index
of Quantized Image DCT Coefficients,” in 2008 Data Com-
pression Conference (DCC 2008), 25-27 March 2008, Snow-
bird, UT, USA, 2008, pp. 352–361.

[18] Darrell Commander, libjpeg-turbo, Available at http://
libjpeg-turbo.virtualgl.org/.

[19] Independent JPEG Group, libjpeg, Available at http://
libjpeg.sourceforge.net/.

[20] Michael J. Flynn, “Some Computer Organizations and Their
Effectiveness,” IEEE Trans. Comput., vol. 21, no. 9, pp. 948–
960, Sept. 1972.

[21] Mozilla, mozjpeg, Available at https://
blog.mozilla.org/research/2014/03/05/
introducing-the-mozjpeg-project/.

[22] Hochschule Aalen, PackJPG., Available at http://www.
elektronik.htw-aalen.de/packjpg/.

[23] Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo
Durand, “Learning Photographic Global Tonal Adjustment
with a Database of Input / Output Image Pairs,” in The
Twenty-Fourth IEEE Conference on Computer Vision and Pat-
tern Recognition, 2011.

[24] Tecnick.com LTD, Tecnick Testimages, Available at http:
//www.Tecnick.com.

[25] Xu, Xing and Akhtar, Zahaib and Govindan, Ramesh and
Llyod, Wyatt and Ortega, Antonio, Demo: Finding the Per-
ceptually Lossless Setting for L-ROMP, Available at http:
//68.181.99.224/ROMP.html.

1396

