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ABSTRACT 

 

Multi-view video plus depth (MVD) is a 3D video 

representation. In MVD, the depth map provides the scene 

distance information and is used to render the virtual view 

through Depth Image Based Rendering (DIBR) technique. 

The depth map coding error will induce distortion in the 

rendered virtual views. This paper proposes a mathematic 

model that can estimate the synthesized virtual view 

distortion induced by depth map compression, and the model 

is employed to the rate distortion optimization (RDO) in the 

depth map coding. Based on the rendered virtual view 

quality, a Lagrangian optimization adjustment scheme at 

Coding Unit (CU) level is proposed to improve the depth 

map encoding efficiency. Experimental results demonstrate 

that the proposed method can improve the BD-PSNR of 

virtual view for 0.62 dB, and the encoding complexity 

reduces compared with the view synthesis optimization 

(VSO) technique in the 3D-HEVC Test Model (HTM). 

 

Index Terms— depth map distortion, depth map 

encoding, exponential model, Lagrangian optimization, 

virtual view distortion 

 

1. INTRODUCTION 

 

Multi-view video plus depth (MVD) 3D video 

representation enables functionalities like 3D television and 

free viewpoint video [1]. MVD includes colorful texture 

image and grey depth map, the depth map is not displayed to 

the viewers but it is used to render the arbitrary virtual view 

with Depth Image Based Rendering (DIBR) [2] technique, 

which will provide the viewers with more realistic 3D visual 

effect. From the coding efficiency point of view, the bitrate 

of the depth map accounts for about 40~60% of the texture 

bitrate, which makes MVD possible to reduce the total 

bitrate of 3D video [3]. 

During the encoding process, quantization will induce 

distortions in both texture image and depth map, which will 

in turn induce distortions in the rendered virtual view images. 

The depth map provides the scene geometry information, 

and distortion in depth map will cause pixel location 

deviation in the rendered virtual view images and induce 

virtual view distortion. 

Many researches exploit the relationship between the 

depth map distortion and the virtual view distortion. Shao et 

al. proposed a liner model among texture image distortion, 

depth map distortion and virtual view distortion [4], but the 

model was not used to improve depth map coding efficiency. 

[5] and [6] proposed a linear model and employed it in depth 

map coding, but the model cannot estimate virtual view 

distortion accurately. De Silva et al. proposed an algorithm 

to minimize the virtual view distortion in intra mode [7-8], 

but the algorithm introduces high computation complexity. 

In 3D-HEVC Test Model (HTM) reference software, view 

synthesis optimization (VSO) technique is used to evaluate 

the virtual view distortion in order to improve the virtual 

view quality [9], in order to reduce the complexity of virtual 

view rendering, the rendering process is simplified which 

makes the estimation of virtual view distortion inaccurate. 

In order to estimate the virtual view distortion accurately 

to improve depth map coding efficiency, an exponential 

model with low complexity is proposed in this paper. We 

employ the exponential model and the corresponding 

Lagrangian Multiplier (LM) into the rate distortion 

optimization (RDO) in HTM reference software version 7.0 

to improve the depth map coding efficiency. The proposed 

model does not perform the actual view synthesis for each 

depth map frame so its complexity is lower compared with 

VSO. 

Jiang et al. shows that dynamically adjusted LM at 

Macro Block (MB) level can achieve better performance in 

video coding in H.264/AVC [10]. Depth map is 

predominantly flat and may have noise and temporal 

inconsistency raised by depth estimation [11]. Different 

depth map areas have different effect on the synthesized 

virtual view, based on the characteristics of depth map, 

adaptive Quantization Parameter (QP) adjustment is 

employed in this paper to achieve better depth map coding 

performance. 

The remainder of this paper is organized as follows. 

Section II derives the exponential model to estimate the 

virtual view distortion induced by depth map compression. 

Section III introduces the utility of the proposed exponential 

model in the RDO in HTM reference software. Section IV 

introduces the Coding Unit (CU) level Lagrangian 

optimization adjustment which can improve depth map 
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coding efficiency. The experimental results and conclusions 

are given in section V and section VI respectively. 

 

2. VIRTUAL VIEW DISTORTION METRIC 

 

In MVD, the depth map is used to render the virtual view 

through a DIBR technique, which is illustrated in Fig. 1. The 

depth map coding error Z  induces pixel location deviation 

p  in the rendered virtual view, which induces virtual view 

distortion. 

The virtual view distortion can be approximately divided 

into texture image induced distortion and depth map induced 

distortion respectively [12]. As the ground truth of 

intermediate virtual view does not exist, in order to evaluate 

the virtual view distortion induced by depth map 

compression, the virtual view synthesized using 

uncompressed depth map is used as the ground truth virtual 

view image. Mean Squared Error (MSE) is used to evaluate 

the distortion, as written in Eq. (1), 
2ˆ[( ) ]i iMSE E I I                                (1) 

where iI  and ˆ
iI  denote the pixel in the ground truth and 

distorted virtual view image, respectively and E[ ] denotes 

the expectation taken over all pixels in one virtual view 

image. 

The test sequences and their synthesized virtual views are 

demonstrated in TABLE I, the depth map is coded with 

different QPs ranging from 10 to 50. The relationship 

between depth map distortion and virtual view distortion of 

test sequence ‘Kendo’ and ‘Lovebird1’ are demonstrated in 

Fig. 2 (a) and (b). Fig. 2 (c) and (d) illustrate the relationship 

of different frames in ‘Kendo’. In the figure, the horizontal 

axis denotes MSE between the original and the compressed 

depth map, the vertical denotes MSE of the synthesized 

virtual view. 

Based on Fig. 2, an exponential model in Eq. (2) is 

proposed to estimate the virtual view distortion induced by 

depth map compression, 

v dD D                                         (2) 

where dD  and vD  represent the depth map distortion and 

the virtual view distortion, respectively,   and   are 

model parameters based on test sequences. Compared with 

Wang’s linear model in [6], the exponential model in Eq. (2) 

can estimate the real virtual view distortion more accurate. 

 
Fig.1. DIBR algorithm principle (parallel camera setup) 

 

TABLE I 

TEST SEQUENCES & RENDERED VIRTUAL VIEWS 

Sequences Reference Views Virtual View 

Balloons 1 & 3 2 

Kendo 1 & 3 2 

Lovebird1 4 & 6 5 

Newspaper 2 & 4 3 

PoznanHall2 6 & 7 6.5 

PoznanStreet 4 & 5 4.5 
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Fig.2.Relationship between depth map distortion and virtual view distortion: 

(a) sequence ‘Kendo’; (b) sequence ‘Lovebird1’; (c) the first GOP in 

‘Kendo’; (d) the third GOP in ‘Kendo’ 

 

  
(a)                                                  (b) 

  
(c)                                                  (d) 

Fig.3. Test Sequence Kendo: (a) Texture video; (b) Depth map; (c) 

Difference between original and coded depth map; (d) Difference in 

synthesized virtual view after depth map coding 
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As we can see in Fig. 2, for different test sequences and 

different frames in one sequence, the curves are different, 

which means the parameters of the exponential model are 

different. In order to calculate the model parameters   and 

  for depth map coding, we need to pre-encode one depth 

map frame twice with different QPs, synthesize the virtual 

views with the coded depth maps and then calculate the 

model parameters. 

In order to reduce the complexities induced by depth map 

pre-encoding and virtual view synthesis, while maintain the 

accuracy of the model parameters, we propose to pre-encode 

the first depth map frame in one Group of Picture (GOP) 

with different QPs to calculate the model parameters, and 

then use the fixed parameters to encode the remaining depth 

map frames in the current GOP. In 3D-HEVC hierarchical 

structure, one GOP consists of 8 frames. Since the depth 

map frames in one GOP are correlated, encoding one GOP 

with fixed parameters can guarantee the depth map coding 

efficiency. On the other hand, we update the model 

parameters at GOP level, when depth map content changes, 

the model can be estimated correctly for efficient depth map 

coding. 

Coding distortion usually emerges in complex areas [13], 

for depth map, sharp edges like boundaries between objects 

in different depths are complex areas [14], as shown in Fig. 

3 (b). Depth map distortion leads to geometric error in the 

synthesized view and affects the synthesized virtual view 

quality. For this reason, depth map mainly distorts in the 

complex areas after compression, as shown in Fig. 3 (c). The 

virtual view images synthesized through DIBR also distort in 

these areas, which is demonstrated in Fig. 3 (d). 

In texture image, pixel intensities in the same depth are 

similar, while differ from those in other depths, as we can 

see in Fig. 3 (a). Depth map provides disparity information, 

so depth map distortion induces pixel location deviation in 

virtual view images. When the pixels deviate from one depth 

to another, the virtual view distortion is significant. On the 

contrary, if pixels stay in the same depth after deviation, the 

distortion in virtual view is negligible. 

Because of this, with the augment of depth map distortion, 

virtual view image distortion does not increase linearly. The 

exponential relationship in Eq. (2) can estimate virtual view 

distortion more accurately, as shown in Fig. 2. 

 

3. DEPTH MAP RATE DISTORTION 

OPTIMIZATION 

 

In HTM reference software, for mode selection and motion 

estimation, Lagrangian Optimization (LO) is used to 

determine each candidate mode and parameter [15]. By 

adding efficient coding options in the rate-distortion sense to 

the codec, the overall coding performance will increase. The 

optimization is to choose the most efficient coded 

representation in the rate-distortion sense for each block. 

The optimization task is complicated because various coding 

options contain varying distortion at different bitrates. The 

Lagrangian optimization used in RDO could be written as: 

arg min arg min( )d d d
S S

J D R                    (3) 

where S  is candidate of coding modes, 
dD  and 

dR  

represent the depth map coding distortion and coding bits 

respectively, and 
d  is the LM, which is not chosen 

arbitrarily. In LO, 
d  is determined by Eq. (4) [16]. 

d

d

d

D

R



 


                                       (4) 

Given that the depth map is not used to display but render 

virtual views, 
dD  in Eq. (3) should be modified in order to 

improve the rendered virtual view quality while encode 

depth map. For this reason we use the depth map virtual 

view distortion model in Eq. (2) to replace the distortion 

metric 
dD . As the distortion metric is modified, the LM is 

also supposed to be modified according to Eq. (4). 

As the LM has a relationship with distortion and bits in 

Eq. (4), from Eq. (2) we can get the modified 
v  for the 

depth map coding written in Eq. (5),  

1v v d

v d d

d d d

D D D
D

R D R

     
       

  
         (5) 

where 
d  is the original LM for the depth map RDO in 

HTM. 

With virtual view distortion metric 
vD  and modified LM 

v , the new Lagrangian Optimization formulation for RDO 

is complete, written as Eq. (6). 

arg min arg min( )v v d
S S

J D R                      (6) 

With Eq. (6), we are able to consider the virtual view 

distortion while encode depth map, which can improve the 

rendered virtual view quality. 

 

4. LAGRANGIAN OPTIMIZATION ADJUSTMENT 

 

In HEVC depth map coding, Lagrangian Multiplier 
d  is 

calculated by Eq. (7), 
( 12)/32 QP

d QPfactor                             (7) 

where QPfactor  is a constant parameter. 

Wang adjusted LM dynamically in H.264/AVC to achieve 

a better coding performance [17]. The LM in 3D-HEVC 

depth map coding is similar to that in H.264/AVC, adjusting 

LM dynamically at CU level can also achieve better 

performance in 3D-HEVC depth map coding. Furthermore, 

in DIBR, distortions in complex areas like boundaries 

between different depths induce significant distortions in 

synthesized virtual view images, while homogenous areas 

like backgrounds have negligible distortions. Since depth 

map has this special characteristic, in order to improve the 

coding efficiency, we adjust LM and QP dynamically based 

on the complexity of depth map. We employ the gradient 
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magnitude G  to represent the complexity of CU in the depth 

map, and G  is calculated as follow: 
1 1

2 2

, 1, , , 1

1 1

1
{ ( ) ( ) }

M N

i j i j i j i j

i j

G I I I I
M N

 

 

 

   


       (8) 

where ,i jI  indicates the depth map pixel intensity located at 

(i,j), M and N denote the horizontal and vertical dimensions 

of the CU respectively. Complex areas derive large G  

values. 

Since the complexities of CUs in one depth map frame are 

various, the fixed LM and QP can hardly satisfy the optimal 

coding efficiency. Ideally, LM and QP should adjust in 

different depth map CUs. Hence, we employ the adjustment 

factor 
ik  to further revise LM: 

i ik                                          (9) 

where 
i  is the LM for the ith CU in the current depth map 

frame, and ik  is the adjustment factor: 

1.25     

1.0          

CU Pic

i

G G
k

Others


 


                        (10) 

where 
CUG  is the gradient magnitude of the current CU and 

PicG  is the gradient magnitude of the current frame. 

As LM adjusts along with the complexity of CU, QP 

should also adjust along with the complexity. Let iQP  

represent the QP of the current CU and QP represent the QP 

of the current frame, we revise iQP  as follow: 

2    

           

CU Pic

i

QP G G
QP

QP Others

 
 


                  (11) 

Both LM and QP adjustment values are obtained through 

extensive experiments. 

 

5. EXPERIMENTAL RESULTS 

 

We employ the proposed distortion estimation model and 

RDO adjustment scheme into HTM reference software 

version 7.0, the detailed test settings are provided in TABLE 

I and the test configuration is based on the Common Test 

Conditions (CTC) in 3D-HEVC [18]. 

We compare the proposed method and Wang’s method [6] 

with the VSO in HTM [9], i.e. the VSO is set as the 

benchmark and we calculate the BDPSNR [19] of the two 

methods with the benchmark. The BDPSNR of the two 

methods are presented in TABLE II. As we can see from the 

table, the BDPSNR with the proposed method is 0.62 dB 

higher compared with VSO and is much better than that of 

Wang’s method, which has proven the effectiveness of the 

proposed method. 

In order to evaluate the complexity of the proposed 

method, Eq. (12) is employed to calculate the coding time 

reduction: 

100%method VSO

VSO

T T
T

T


                        (12) 

where 
methodT  is the encoding time of the proposed method or 

Wang’s method, and 
VSOT  is the encoding time of VSO. 

TABLE III demonstrates that the coding time of the 

proposed method reduces approximately 20% compared 

with VSO. As the proposed metric needs not to render every 

block in depth map coding, its computational complexity is 

reduced compared with VSO. For the proposed method 

needs pre-encoding to calculate the model parameters, this 

has induced extra complexity which makes its complexity a 

bit higher than Wang’s method, but compared to VSO, the 

complexity of pre-encoding is negligible. 

 

6. CONCLUSIONS 

 

In this paper, an exponential model is proposed, which can 

estimate the virtual view distortion induced by depth map 

distortion accurately. This exponential model is employed to 

the RDO mode selection scheme along with the new LM 

derived from the exponential model. A Lagrangian 

optimization adjustment scheme at CU level based on depth 

map complexity is also proposed to increase the depth map 

coding efficiency. Experimental results with different test 

sequences demonstrate that the proposed method can bring 

considerable BDPSNR improvement compared with VSO. 

And the proposed method has lower coding complexity 

which brings about 20% time saving compared with VSO. 
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TABLE II 

BDPSNR PERFORMANCE OF DIFFERENT METHODS 

Sequences Proposed Wang’s Method 

Balloons 0.36 -0.84 

Kendo 0.12 -1.07 

Lovebird1 0.29 -0.94 

Newspaper 2.44 1.47 

Poznan_Hall2 0.13 -1.32 

Poznan_Street 0.36 -1.43 

Average 0.62 -0.69 

 

TABLE III 

ENCODE TIME SAVING OF DIFFERENT METHODS COMPARED WITH VSO 

Test 

Sequences 

Encode Time Reduction（%） 

Proposed Method Wang’s Method 

Balloons -17.8 -21.1 

Kendo -17.2 -22.2 

Lovebird1 -18.8 -21.8 

Newspaper -20.4 -24.6 

Poznan_Hall2 -23.5 -25.9 

Poznan_Street -19.0 -21.8 

Average -19.5 -22.9 
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