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ABSTRACT

Keypoint detection and description using approximate con-
tinuous scale space are more efficient techniques than typ-
ical discretized scale space for achieving more robust fea-
ture matching. However, this state-of-the-art method requires
high computational complexity to approximately reconstruct,
or decompress, the value at an arbitrary point in scale space.
Specifically, it has O(M2) computational complexity where
M is an approximation order. This paper presents an efficient
scale space approach that provides decompression operation
with O(M) complexity without a loss of accuracy. As a re-
sult of the fact that the proposed method has much fewer vari-
ables to be solved, the least-square solution can be obtained
through normal equation. This is easier to solve than the exist-
ing method which employs Karhunen–Loeve expansion and
generalized eigenvalue problem. Experiments revealed that
the proposed method performs as expected from the theoreti-
cal analysis.

Index Terms— Feature extraction, Spectral SIFT, Scale
space, Compressed scale space, Image filtering

1. INTRODUCTION

Keypoint feature has played an essential role in image
processing, computer vision, and pattern recognition. It
has flourished in various tasks including structure-from-
motion [1], object recognition [2, 3], and image retrieval [4].
In general, the appearance of a visual object in a visual
scene geometrically varies due to camera and/or object mo-
tion. The keypoint feature approaches enable us to uniformly
handle visual objects with appearance variation by using
geometric invariance. Many methods have been proposed
after SIFT [2, 3] year on year such as SURF [5], PCA-
SIFT [6], FAST [7], AGAST [8], CARD [9], FREAK [10],
SPADE [11], ORB [12], SIFER [13], DSIFER [14], which are
pursuing a higher trade-off between computational complex-
ity, robustness, and stability. We focus on keypoint feature
with scale and rotation invariance.

An important theory for scale and rotation invariance is
scale space representation of an image. Scale space is a scalar
field generated by convolution between an input image and an
isotropic kernel with scale parameter σ. As a primitive idea,

Lindeberg [15] validated that extrema in scale space gener-
ated by Laplacian-of-Gaussian (LoG) kernel can be used as
keypoints robust to scale and rotation changes. However,
it is computationally-expensive to straightforwardly com-
pute scale space and its extrema due to its dimensionality
elevation, i.e., a D-dimensional image leads to a (D + 1)-
dimensional scale space. SIFT achieved realistic complexity
by handling LoG kernel as Difference-of-Gaussian (DoG)
kernel derived from diffusion equation. SURF enabled online
image processing by using, instead of LoG kernel, box-
stacked kernel and integral image [16] with a certain sacrifice
of rotation invariance. The other existing methods [6–14] also
discussed more efficient approaches of scale space for robust
keypoint feature. Thus, the performance depends heavily on
how to generate and deal with scale space.

A major difficulty of feature keypoint is mainly caused
by considerable size of scale space. Although the existing
methods roughly describe scale space as a stack of its sliced
images along the σ axis, this representation results in degrad-
ing the stability of keypoints. This is because some extrema
in the original scale space may be lost in its over-discretized
representation. A remarkable work on this representation
problem is Spectral SIFT [17], achieving to describe scale
space as a linear combination of several component images
without slicing σ. As inspired from this concept, we call
the representation a compressed scale space for convenience.
This approach is achieved by decomposing a kernel into basis
kernels and their weighted function approximated by M -
order polynomials via continuous Karhunen-Loeve transform
(KLT). The compressed scale space provides an operation to
approximately-reconstructed, i.e., lossy-decompressed, the
value of an arbitrary point in O(M2) time. This idea signif-
icantly improves the stability of keypoint detection because
of continuousness and analytical extrema detection. How-
ever, the computational time of feature description are still
expensive due to the O(M2) time per point and millions of
decompression operations per image.

This paper presents a keypoint detection/description
method with lower computational time than but theoretically-
equivalent stability to Spectral SIFT. This improvement is
achieved by reducing the time of the decompression oper-
ation from O(M2) to O(M) without any loss in accuracy.
The key technique is compressed scale space derived from
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polynomial regression of an M -order polynomial of σ, which
is straightforwardly solvable using normal equation and easy
to derive because of fewer unknown variables than Spectral
SIFT. Experiments showed that our method reduced 34%
running time in total (41% in description process and 19% in
detection process) without a loss in accuracy.

2. RELATED WORK

This section summarizes existing algorithms for keypoint de-
tection and description. Consider convolution between a two-
dimensional target image f(p) ∈ R and an isotropic kernel
h(σ; r) ∈ R where p ∈ Z2 is a pixel position in the image,
r ∈ R+ is the radius and σ ∈ R+ is the scale of the kernel.
This operation generates

H(σ;p) =
∑

q∈N (p)

h(σ; ∥q − p∥) f(q), (1)

where N (p) ⊂ Z2 indicates pixel positions in the neighbor-
hood of p and ∥·∥ denotes the ℓ2-norm of a vector. This three-
dimensional scalar field is generally called a scale space. The
most common choices of h(·; ·) are the Gaussian kernel or the
(scale-normalized) LoG kernel defined by

h(gauss)(σ; r) :=
1

2πσ2
e−

r2

2σ2 , (2)

h(LoG)(σ; r) :=
r2 − 2σ2

2πσ4
e−

r2

2σ2 . (3)

A major difficulty for generating a scale space is the space
and computational complexity of (1), which increases in pro-
portion to the window area |N (·)| determined from σ.

Most algorithms in computer vision roughly handle a
scale space by discretizing σ aggressively. In keypoint de-
tection, Lindeberg [15] indicated that extrema in LoG scale
space are robust to scale and rotation changes. Inspired by this
work, SIFT [2, 3] uses the difference of Gaussian scale space
instead of LoG scale space. This is because it approaches
asymptotically to the LoG scale space when ∆σ → 0. In
local description, SIFT also uses Gaussian scale space to
describe some of detected keypoints. Both scale spaces are
handled by slicing them in a logarithmic manner of σ in order
to reduce the complexity of (1). However, this discretization
deforms the variation of H(σ;p) in the direction of σ.

A remarkable solution to the over-discretization problem
is the Spectral SIFT [17]. Based on spectral theory, this
method approximates the kernel h(·; ·) by

ĥ(σ; r) =
M∑

m=0

wm(σ)ϕm(r), (4)

where wm(·) are called weight functions and ϕm(·) are called
basis kernels. Note that limM→∞ ĥ(σ; r) = h(σ; r). By sub-

stituting (4) for (1), H(·; ·) is approximated by

Ĥ(σ;p) =
M∑

m=0

wm(σ)Φm(p), (5)

where Φm(·) are component images defined by

Φm(p) =
∑

q∈N (p)

ϕm(∥q − p∥) f(q), (6)

which is generated by convolution between the target im-
age and the basis kernels. We call Ĥ(·; ·) a compressed
scale space. The optimal decomposition of (4) in the least-
square manner corresponds to the solution of the continuous
Karhunen-Loeve expansion; however, it cannot be solved
analytically. Hence, assuming that wm(σ) is sufficiently-
smooth within a certain interval σ ∈ [σ1, σ2], this method
approximates wm(·) by the M -order polynomial

wm(σ) ≈
M∑
n=0

a(m)
n σn, (7)

and then computes a
(m)
n and the corresponding ϕm(·) via

a generalized eigenvalue problem. In the compressed scale
space, its extrema in the σ direction can be derived by

∂Ĥ(σ;p)

∂σ
=

M−1∑
n=0

{
(n+ 1)a

(m)
n+1

M∑
m=0

Φm(p)

}
σn = 0, (8)

which can be solved by the quadratic formula if M = 3. By
using a sufficiently narrow interval σ ∈ [σ1, σ2] (c.f. octave
strategy), the order parameter M can have a small value.

A remaining problem of the above compressed scale
space is the high computational complexity of computing (5),
i.e., decompression. Spectral SIFT employs LoG and Gaus-
sian compressed scale space in keypoint detection and local
description, respectively. Once the (M + 1) component im-
ages are generated in advance, we can compute (5) in O(M2)
time, because of variable separation into scale σ and spatial
variable r in (4). However, the complexity is still high even
if M is small because the local description step requires to
decompress various locations in Ĥ(·; ·) numerous times.

3. PROPOSED METHOD

We propose a compressed scale space that provides decom-
pression operation with lower computational complexity to
reduce the computational time.

3.1. Kernel Approximation via Polynomial Regression

Since Gaussian and LoG scale space have a smooth variation
in the σ direction, our method approximates the kernel h(·; ·)
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and its scale space H(·; ·) by the M -order polynomials

ĥ(σ; r) =
M∑

m=0

σmϕm(r), Ĥ(σ;p) =
M∑

m=0

σmΦm(p) (9)

which are understood as a specific case of wm(σ) = σm in
(7). Consider a compressed scale space with σ ∈ [σ1, σ2].
The optimal polynomial regression of (9) in the least-square
manner is derived by the normal equation Aϕ(r) = b(r),
where ϕ(r) = [ϕ0(r), . . . , ϕM (r)]

⊤ ∈ RM+1, A = (Ak,l) ∈
R(M+1)×(M+1) and b(r) = (bk(r)) ∈ RM+1 with

Ak,l =

∫ σ2

σ1

σk+l dσ =
σk+l+1
2 − σk+l+1

1

k + l + 1
, (10)

bk(r) =

∫ σ2

σ1

σk h(σ; r) dσ. (11)

In the case of Gaussian kernel, if r ̸= 0, (11) is expanded to

b
(gauss)
k (r) = − rk−1

2
k+3
2 π

∫ r2

2σ2
2

r2

2σ2
1

t(−
k−1
2 )−1e−tdt, (12)

otherwise,

b
(gauss)
k (0) =

{
1
2π (log σ2 − log σ1) if k = 1

1
2π(k−1) (σ

k−1
2 − σk−1

1 ) otherwise
. (13)

In the case of LoG kernel, (11) has the form:

b
(LoG)
k (r) = −2b

(gauss)
k (r) + r2b

(gauss)
k−2 (r). (14)

Note that the integral in (12) can be calculated using the in-
complete gamma function Γ(a, x) =

∫∞
x

ta−1e−tdt. Specif-
ically, we obtain ϕ(r) by first computing b(r) and then mul-
tiplying A−1 to it for each r. Similar to Spectral SIFT, the
extrema in our compressed scale space is derived from

∂Ĥ(σ;p)

∂σ
=

M−1∑
m=0

(m+ 1)Φm(p)σm = 0, (15)

which can be solved by the quadratic formula if M = 3. Fig-
ure 1 depicts m-th basis kernels of the Gaussian kernel and
the LoG kernel where m = 0, 1, 2, 3. Both higher-order basis
kernels converge to almost zero. Hence, M = 3 is sufficient
to well approximate their kernels.

3.2. Advantages over Spectral SIFT

Our method has the clear advantage that an arbitrary loca-
tion in our compressed scale space is decompressed in O(M)
time as (9) shows. In other words, our idea has succeeded to
sufficiently reduce the O(M2) complexity of Spectral SIFT.
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Fig. 1: Shape of basis kernels ϕm(r) of two-dimensional
Gaussian kernel (left) and LoG kernel (right).

Moreover, its approximate accuracy is maintained from Spec-
tral SIFT as shown below. By substituting (7) for (5),

Ĥ(σ;p) =

M∑
m=0

(
M∑
n=0

a(m)
n σn

)
Φm(p) (16)

=

M∑
n=0

σn

{
M∑

m=0

a(m)
n Φm(p)

}
. (17)

If we redefine {·} as a new Φm(·), this is equivalent to (9) of
our method. It runs without any loss of accuracy as compared
with Spectral SIFT. From a theoretical viewpoint, our solu-
tion is considered as a different solution provided by Spectral
SIFT via a linear transform, which transfers computing wm(·)
in the decompressing part to computing Φm(·) in the pre-
computing part. Normal equation is easier than generalized
eigenvalue problem to solve because of much fewer parame-
ter. Note that our method eliminates a

(m)
n but still provides

the essentially same solution. Thus, our faster decompression
sufficiently accelerates local description as well as keypoint
detection and we also inherited the advantages of Spectral
SIFT. Incidentally, our compressed scale space may provide
faster filtering than the state-of-the-art constant-time filtering
algorithms including recursive filters [18, 19] and frequency-
sampling approaches [20–23]. This is because our decom-
pression operation requires M multiplications/pixel only.

4. EXPERIMENTS AND DISCUSSION

This section verifies practical performance of our method.
The test environment mounts on an Intel Core i7-4770
3.40GHz CPU with 8GB main memory. The competitors
are SIFT [2, 3], Spectral SIFT [17], and our method that all
are written in C++ with OpenCV 2.4.11 [24]. Their parame-
ters are L = 6 for SIFT and M = 3 for both Spectral SIFT
and our method where L and (M + 1) indicate the number
of convolutions per octave. We set σ ∈ [1.0, 4.0] with some
margin for processing each octave of compressed scale space.
The test image set is the Oxford dataset [25], which contains
one standard image (Image 1) and its five other-view images
(Image 2–6) in each subset (”leuven”, ”trees”, ”ubc”, ”boat”,
”graf”, and ”wall”).

Figure 2 shows the repeatability score defined in [26]
about the six subsets, which have some visual deformations
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Fig. 2: Repeatability of keypoint detection for 50% overlap error in Oxford dataset
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Fig. 3: Computational time of Spectral SIFT and our method (M = 3)

such as scale, rotation, blur and so on as annotated to each
subfigure caption. Evidently, our method achieves repeatabil-
ity score higher than SIFT and comparable to Spectral SIFT.
These results support our theoretical analysis mentioned in
Section 3.2. Our method seems to inherit regular characteris-
tics of Spectral SIFT about robustness.

Figure 3 shows computational time of Spectral SIFT
and our method in “boat1” (850×680 pixels) and “bark1”
(765×512 pixels) subsets. We test two cases of single-core
and multi-core processing with OpenMP for filtering via the
FFT implemented in OpenCV where both methods require
(2M + 2) convolutions to generate LoG and Gaussian com-
pressed scale space. In all cases, our method sufficiently
outperforms Spectral SIFT in terms of total time and, in
particular, description time. The case of multi-core filtering
shows that our method reduces the total time (and the descrip-
tion time) by 34% (and 41%) in “boat1” and by 28% (and
43%) in “bark1”. Our method achieves a sufficient reduction
rate since decompression operation occupies the largest por-
tion of the keypoint description process, which is obviously
dominant in the whole process. A limitation of our method is
its reduction rate lower than the expectation of our theoretical

analysis, i.e., O(M2) to O(M) where M = 3. This is be-
cause it contains many other subprocesses including solving
quadratic equations and generating orientation histograms.
Hence, our method runs faster if more keypoints are detected
as “boat1” has revealed.

5. CONCLUSIONS

This paper presented an efficient method for keypoint detec-
tion and description based on compressed scale space. The
major idea was to simplify variations in the σ direction of
scale space as low-order polynomials, which are solved via
normal equation in the least-square sense. As compared with
Spectral SIFT, it runs significantly faster with comparable ro-
bustness to visual deformation. As future work, we will de-
sign more efficient algorithms by enhancing the robustness to
more complex visual deformations [15, 27].
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