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ABSTRACT

This paper addresses issues in fall detection from RGB-D
videos. The study focuses on measuring the dynamics of
shape and motion of the target person, based on the obser-
vation that a fall usually causes drastic large shape deforma-
tion and physical movement. The main novelties include: (a)
forming contours of target persons in depth images based on
morphological skeleton; (b) extracting local dynamic shape
and motion features from target contours; (c) encoding global
shape and motion in HOG and HOGOF features from RGB
images; (d) combining various shape and motion features for
enhanced fall detection. Experiments have been conducted on
an RGB-D video dataset for fall detection. Results show the
effectiveness of the proposed method.

Index Terms— Fall detection, shape feature, contour de-
scriptor, RGB-D videos, elderly care

1. INTRODUCTION

Population aging is taking place in nearly all countries of the
world, with a considerably high rate of growth, and many peo-
ple in this age group choose to live alone [1]. Statistics show
that falling is one of the most fatal threats for them, which
may cause bone fracture, coma or even death [2]. It can often
be difficult for themselves to seek help immediately after the
fall, especially when severe injury or unconsciousness occur.
Hence, there is an increasing demand for automatic surveil-
lance systems that aim at automatically detecting falls and
triggering timely alarms for emergency medical treatment.

Many existing solutions employ wearable devices with
motion sensors, such as accelerometers and gyroscopes [2].
Despite the reasonable results achieved by wearables, they
suffer from some vital user experience flaws, such as sync is-
sues, limited battery life and uncomfortableness. Visual mon-
itoring hence has some advantages, due to its non-invasive
and less-disturbing nature.

Much effort has been made to detect human falls in
videos. One way to address this problem is to analyze the 2-
D bounding boxes containing the target person in each frame.
Debard et al. [3] extract 4 features from the bounding box
to describe a fall, including aspect ratio, torso angle, center
speed and head speed. An SVM classifier is employed to
detect falls using these features. Charfi et al. [4] define 14

features based on the bounding box such as height and width,
aspect ratio, and centroid coordinates of the box. Transforms
(Fourier, wavelet) are applied to these features before fall de-
tection through SVM and AdaBoost classification. The major
drawback of these methods is insufficient description of the
shape or motion by using the rigid bounding box sorely, and
the performance is also heavily dependent on view angles.

Another commonly adopted strategy is to represent the
fall in 3-D settings. Auvinet et al. [5] reconstruct a 3D vol-
ume of the person from 8 cameras based on camera calibra-
tion, and a fall is indicated if a large portion of the body vol-
ume is found near the ground for a certain period of time.
Mastorakis et al. [6] measure the velocity of target person
based on the contraction or expansion of the width, height and
depth of the 3-D bounding box, and detect a fall by thresh-
olding the velocity. Stone and Skubic [7] model the vertical
state of a 3D object in each depth image frames, and segment
the time series in on-ground state from those in vertical state.
Then, an ensemble of decision trees is used to compute a con-
fidence that a fall occurs before an on-ground state. It is worth
noting the trade-off between the performance and complexity
in 3-D modeling or multi-camera methods.

In this paper, we propose a novel scheme for human fall
detection in RGB-D videos. Foreground human detection is
done by RGB frame differencing, followed by using SURF
keypoints to mark the blob boundary for defining the target
bounding box. Instead of extracting structural features from
rigid bounding boxes, we extract local shape and motion fea-
tures from target contours, and fusing them with HOG- and
HOGOF-based features encoding global shape and motion.
This may lead to enhanced performance, without 3-D model-
ing or combining multiple cameras. The main contributions
include: (a) forming contours of target persons in depth im-
ages based on morphological skeleton; (b) extracting local
shape and motion features from target contours; (c) encod-
ing global shape and motion in HOG and HOGOF features
from RGB images; (d) combining various shape and motion
features for enhanced fall detection. Experiments have been
conducted on an RGB-D video dataset for fall detection.

The paper consists of following parts: Section 2 revis-
its some existing work to which our work is closely related.
Section 3 describes each major step of the proposed method
in detail. Section 4 shows some experimental results on an
RGB-D video dataset. Finally, Section 5 concludes the paper.
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2. REVIEW OF RELATED WORK

This section briefly reviews some previous work that our work
is built upon, for conceptual and mathematical convenience in
subsequent sections.

2.1. Existing Feature Detectors and Descriptors

Speeded-Up Robust Features (SURF) is a local feature de-
tector and descriptor, originally proposed by Bay et al. [8],
that is inspired by SIFT [9]. SURF uses Hessian-matrix ap-
proximation operating on the integral images to locate in-
terest points (keypoints) that are invariant to image scaling,
translation, and rotation, and partially invariant to illumina-
tion change and affine or 3D projection.

Histogram of Oriented Gradients (HOG) is a feature de-
scriptor for object detection and classification, originally pro-
posed by Dalal and Triggs [10]. The basic idea is that object
shape can often be characterized by the distribution of inten-
sity gradients through voting dominant edge directions. The
HOG is computed on a dense grid of uniformly spaced cells
and uses local contrast normalization in overlapping blocks.

Optical flow is the pattern of apparent motion that is con-
tained in a visual scene. Two common techniques for opti-
cal flow estimation are the Horn-Schunk method and Lucas-
Kanade algorithm [11]. Given the optical flow between two
consecutive video frames, motion features can be extracted
such as Histogram of Oriented Optical Flow (HOOF) [12].

2.2. Support Vector Machine

Support Vector Machine (SVM) is a classification method,
developed under the statistical learning theory, for super-
vised training. A most commonly discussed form is SVM
for binary classes [13]. Given a set of labeled feature vectors
{(xi, yi)}Ni=1 where xi ∈ Rd and yi ∈ {−1,+1}, an SVM
aims to find a classifier that has the minimum generalization
error on the test set. This is related to finding maximum
margin hyperplane, formulated by

min

(
1

2
‖w‖2 + C

N∑
i=1

ξi

)
, (1)

s.t. yi(〈w,xi〉+ b) ≥ 1− ξi, ∀i;
ξi ≥ 0, ∀i,

where 〈·, ·〉 denotes the inner product, w is a weight vector,
b is a bias, C > 0 is a regularization coefficient, and ξi is a
slack variable. This optimization problem can be formed by
Lagrange multiplier, and solved by applying quadratic pro-
gramming to its dual form.

For nonlinear separable classes, a mapping (φ : Rd 7→
H) is usually applied to map the feature vectors xi ∈ Rd

to a higher dimensional space. This produces a reproducing
kernel Hilbert space (RKHS)H with an inner product (kernel
function) K(xi,xj) = 〈φ(xi), φ(xj)〉H. In this way, classes
may become more close to linearly separable.

3. PROPOSED FALL DETECTION SCHEME

This section describes each major step of the proposed
method in detail.

3.1. Encoding Shape and Motion in HOG and HOGOF
Features from RGB Images

Foreground human detection is done by differencing consecu-
tive RGB frames. SURF keypoint detector is applied to detect
interest points in difference images that are used for fixing the
target bounding box (BB) of sizew×h. The region of interest
(ROI) of size w × h (defined by BB) is normalized to a fixed
size of λ×λ, by adopting the method from [14] and [15]. For
each frame, the normalized ROI is used for extracting HOG
features. For each pair of normalized ROIs from consecutive
frames, optical flow is estimated and Histogram of Oriented
Gradients of Optical Flow (HOGOF) is computed (illustrated
in Fig. 1). The basic idea is similar to HOG that object mo-
tion can be represented by the distribution of optical flow as
the votes for dominant directions of movement. By stack-
ing the extracted HOG or HOGOF features temporally, the
spatio-temporal features for shape or motion are obtained.

Fig. 1. Flow chart for the extraction of HOGOF features, where “OF” is
the computed optical flow, “OFmag” and “OFphase” are the optical flow mag-
nitude and direction, “Isat” and “Ihue” are the saturation and hue images that
are color-coded by MATLAB function flowtoColor() based on HSV model,
“IHSV” is the combined HSV image in RGB color space, “HOG” is the ex-
actly the same process of extracting HOG features.

3.2. Extracting Shape and Motion Features from Target
Contours in Depth Images

Skeletons of the target person are formed from the corre-
sponding ROIs in each depth image frame using morpholog-
ical operations. Target contours are obtained by taking end-
points of the skeleton, resulting in 8 extrema points (blue dots
in Fig. 2). Based on target contours and their bounding boxes,
local shape and motion features can be extracted.
For each frame, the local shape feature vector has the follow-
ing form:

fs =
[
g, {Ei}8i=1, {di}8i=1, θ,AR,Ecc

]T
, (2)

where g is the coordinate of contour centroid (yellow dot in
Fig. 2), Ei are the coordinates of extrema points, di is the
distance (green line in Fig. 2) from each extrema point to the
centroid, θ and AR are the orientation and aspect ratio of the
box, and Ecc is the eccentricity.
For each pair of consecutive frames, the local motion feature
vector is defined as

fm =
[
{∇di}8i=1, {ki}8i=1, kg

]T
, (3)
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Fig. 2. The illustration of feature extraction from target contour. It and
It+1 are two consecutive frames.

where ∇di = η × di(t+ 1)− di(t)
∆t

is the gradient of dis-

tance di, ki = η × dist[Ei(t+ 1),Ei(t)]

∆t
and kg = η ×

dist[g(t+ 1),g(t)]

∆t
are the instantaneous velocity of extrema

points and the centroid respectively, η is the frame rate, ∆t is
the time step (∆t = 1), and dist(·, ·) is the Euclidean distance
between two points.

3.3. Combining Shape and Motion Features

To combine the discriminative power of different features, a
simple feature-level fusion scheme is adopted here by con-
catenating all features into an augmented feature vector

f =
[
fTHOG, f

T
HOGOF, f

T
Contour

]T
, (4)

where fHOG and fHOGOF are the HOG and HOGOF features
encoding global shape and motion using RGB images, and
fContour = [fTs , f

T
m]T is the concatenation of local shape and

motion features extracted from target contours in depth im-
ages. Fusing various shape and motion features may lead to
enhanced fall detection.

Fig. 3. The illustration of temporal window averaging, where each
video segment of variable length len is divided into M (fixed value) non-
overlapping windows of equal size W = round(len/M). After window
averaging, each resulting video segment will have a fixed length of M .

The final feature vector for each video segment is ob-
tained by temporally stacking the feature vectors extracted
from each frame. However, each video segment may have

varying number of frames. Temporal window averaging is
performed to keep all video segment outputting feature vec-
tors of the same length, as shown in Fig. 3. That is, given
a video segment containing len frames, feature vectors in
the form of (4) from every W = round(len/M) frames are
averaged, followed by feature normalization, yielding f javg,
j = 1, · · · ,M . Thus, the final feature vector for each video
segment will have fixed length of M :

x =
[
f1avg, f

2
avg, · · · , fMavg

]T
. (5)

3.4. Detecting Falls by SVM Classifier

In this work, fall detection is formulated as a binary classifi-
cation problem (total number of classes K = 2) that distin-
guishes the fall from other activities. That is, all remaining
activities are treated as one negative class. Given a training
set X = {(xi, yi)}Ni=1, where xi is the feature vector for the
i-th video segment in the form of (5), yi ∈ {+1,−1} is the
corresponding class label, and N is the total number of video
segments in the training set. A binary SVM classifier [13] is
trained with X . For each feature vector x representing a test-
ing video segment, its class label ŷ = sgn(a), where sgn(·)
is a sign function, and a is the output margin of the SVM
classifier, where a fall is indicated as ŷ = +1.

4. EXPERIMENTAL RESULTS

This section shows the experimental results on an RGB-D
video dataset for fall detection using the proposed method.

4.1. RGB-D Video Dataset on Fall Detection

Experiments have been conducted on an RGB-D video
dataset built by ourselves at Chalmers University of Tech-
nology using a Kinect sensor. A total of 20 participants are
involved to perform the actions of falling and lying down. Ly-
ing down is considered as it is visually more confusing thus
more difficult to be distinguished from a fall than any other
activities (e.g., walking, running, getting seated, crouching
down). For both RGB and depth streams, the frame rate is
20 FPS and the resolution is 640 × 480 pixels. The aver-
age length of video is approximately 300-400 frames (≈ 10
seconds). Detailed information on the dataset is given below.

Table 1. Quantitative specifications on the RGB-D video dataset.

Class# Activity #Subjects #RGB Video #Depth Video
1 Falling down 20 400 400
2 Lying down 20 400 400

As shown in Table 1, our dataset uses 800 RGB videos and
800 corresponding depth videos. Each video is pre-processed
to only include the segment of activity. In our tests, the video
events containing falls are selected as positive samples, while
those containing lying down activities are selected as negative
samples.
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Fig. 4. Keyframes from the RGB-D video dataset on fall detection. Row 1-2: human falls in various ways in RGB and depth images. Row 3-4: other activities
mainly containing lying down in RGB and depth images.

Fig. 4 depicts some keyframes of videos from our dataset.
It can be observed that lying down activities can appear quite
confusing in comparison with human falls.
4.2. Experimental Setup

Parameter Settings: The SURF thresholds for RGB and depth
images are 50 and 1000, respectively. For ROI normalization,
λ = 32. For HOG features, all ROIs are normalized and di-
vided into non-overlapping cells of size 8×8. The number of
histogram bins is 9 (unsigned). Blocks are formed by group-
ing 2 × 2 adjacent cells with overlapping rate 50%. HOGOF
features are extracted based on the code from [16] and [17].
For temporal window averaging, M = 10.
Dataset Splitting for Training/Testing: A C-SVM classifier
using RBF kernels [13] is employed, using libSVM [18], with
the regularization coefficient C and the kernel parameter γ
tuned by 10-fold cross-validation. Two case studies are car-
ried out: (i) for case study-1, the SVM classifier is trained
on 200 falls and 200 lying down activities (50%), and the re-
maining ones (50%) are used for testing; (ii) for case study-2,
320 falls and 320 lying down activities (80%) are used for
training, and the remaining ones (20%) are used for testing.
Note that subjects used for training are avoided in the test set.

4.3. Tests, Comparisons and Evaluations
The performance of the proposed fall detection scheme is
evaluated according to detection accuracy, false negative rate
and false positive rate (also known as false alarm rate) [19]
[20] on the test set, as shown in Table 2. In Table 2, the pro-
posed scheme shows high detection accuracy of human falls
while maintaining small false negatives and false alarms on
the test set, despite the confusion caused by lying down activ-
ities. In addition, comparisons are made with classification
using standalone features in Table 2(a), i.e., fHOG, fHOGOF,
fContour, where the proposed fusion scheme outperforms in de-

tection rate and false negatives. Further, it is observed in Table
2(b) that larger size of training set leads to better performance
on the testing set.

Table 2. Performance evaluation: detection rate, false negative rate (FNR),
and false positive rate (FPR) on the test set.

(a) Comparison between the proposed feature fusion and standalone features
for case study-1.

Feature Detection rate (%) FNR (%) FPR (%)
HOG 93.75 6.25 5.00

HOGOF 94.00 6.00 4.00
Contour 92.75 7.25 9.00
Fusion 95.25 4.75 5.00

(b) Comparison between case study-1 and case study-2.
Case Detection rate (%) FNR (%) FPR (%)

Case study-1 95.25 4.75 5.00
Case study-2 97.50 2.50 2.50

Discussion: Video segments were manually chosen instead
of automatically done. Such a setting is used for examining
whether the proposed method is effective, without the impact
of other parts that could cause overall performance degrada-
tion. If videos are automatically segmented, the performance
of classification is expected to have some degradation.

5. CONCLUSION

The proposed fall detection scheme characterizes falls by
measuring the dynamics of shape and motion of the tar-
get person, based on global features encoded in HOG and
HOGOF using RGB images, and local features extracted
from target contours in depth images. The fusion of these
features is shown to be effective in obtaining high detection
rate with small false alarms in our experiments on an RGB-
D video dataset. Further study is planned on testing more
datasets, extending to more activities and comparing with
state-of-the-art methods.
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