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ABSTRACT

This paper addresses the problem of scene classification and pro-
poses learning discriminative and shareable patches (LDSP) method.
The main idea of learning discriminative and shareable patches is
to discover patches that exhibit both large between-class dissimilar-
ity (discriminative) and large within-class similarity (shareable). A
novel and efficient re-clustering, based on co-occurrence relation-
ship of first-step clustering, is proposed and conducted to further
enhance the visual similarity of patches within each cluster. In order
to establish appropriate criteria for selecting desired patches, a con-
densed representation of image features called feature epitome is in-
troduced. In the classification, a patch feature involving pre-trained
convolutional neural network model is investigated. The experimen-
tal result outperforms existing single-feature methods on MIT 67
scene benchmark in term of mean Accuracy Precision.

Index Terms— Learning discriminative and shareable patches,
scene classification, deep-learned patch feature

1. INTRODUCTION

Scene classification, which aims at determining the scene category
that one image is taken in, is one of the main tasks of computer vi-
sion. It can be applied in areas such as scene classification apparatus
of video, autonomous robotics, digital libraries and so on.

Considering the complexity and diversity of scene images, sev-
eral frameworks and methodologies have been proposed. Discover-
ing distinct features for scene categories is the most essential moti-
vation in previous works. [1, 2] focus on creating local features to
capture distinct characteristics of each category. [3, 4, 5] attempt to
construct mid-level features based on patches, such as patch filter
banks or patch dictionary. Recently, [6, 7] have proven the effective-
ness of applying deep learning methods in scene classification.

Meanwhile, some other different methods based on image parts
or patches have also been proposed: [8] addresses the importance
of learning image regions with higher occurrence possibility of dis-
criminative parts; however, these parts are manually acquired. [9,
10, 11] aim at proposing an automatic mode for discovering distinct
image parts. These distinct parts or patches are supposed to reveal
the semantics of each scene category; however, previous works fail
to emphasize the property of desired patches in seeking process.

The proposed learning discriminative and shareable patches
method, referred to as LDSP, mainly solves two problems in previ-
ous works: (i) how to discover patches with higher visual similar-
ity: besides certain clustering applied in previous works, proposed
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co-occurrence re-clustering will further improve the shareable prop-
erty of patches; (ii) how to establish criteria for selecting desired
patches: compared with Entropy-Rank in [10], representative power
presented gives a straightforward constraint. Learned patches are de-
noted as discriminative and shareable patches (DSPs): being share-
able implies patches sharing common patterns occur frequently in
images from the very category, while being discriminative suggests
that these patches occur rarely in images from other categories.

Our scene classification framework is based on LDSP. There
are three main advantages of the classification framework involv-
ing DSPs: (i) semantic diversity elimination: DSPs are capable of
capturing semantic essence of each scene category; (ii) experimen-
tal time reduction: compared with training images that are directly
utilized, DSPs are of both smaller size and quantity; (iii) universal
application potentiality: for two different databases that contain
scene categories with the same or similar semantics, it is possible to
share or exchange the DSPs for these categories.

The remaining of the paper is organized as follows. Section 2
gives detail explanations on our proposed LDSP method. The ex-
perimental results are presented and discussed in section 3. Finally,
conclusions are drawn in section 4.

2. LEARNING DISCRIMINATIVE AND SHAREABLE
PATCHES

The proposed LDSP method is capable of automatically discovering
discriminative and shareable patches of both high between-class dis-
similarity and within-class similarity. As shown in Fig. 1, LDSP
method consists of three successive steps: K-means of Segmen-
tation Component Centroids (KSCC), Hierarchical Clustering and
Co-occurrence Re-clustering (HCCR), Discriminative and Shareable
Patch Selection (DSPS). After the KSCC step, initial sets of patches
are supposed to be sampled. The HCCR step conducts two-step clus-
tering to seek several groups of visually similar patches for each
scene category. The final DSPS step deals with the problem how
to evaluate the representative power of each cluster of patches. The
detailed procedure is illustrated in the following section.

2.1. K-means of Segmentation Component Centroids

Initial patches are supposed to be sampled from training images in
the first step. In [9], randomly sampling, which means patches are
completely randomly generated, is applied; however, these patches
may not be semantic enough to be qualified representatives of orig-
inal images. In our work, a sampling approach taking segmentation
results into account is going to be applied.

To be specific, firstly original image is segmented by the efficient
graph-based image segmentation [12]. Next, K-means is applied to
cluster centroids of segmented connected components (or regions)
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Fig. 1. Flow chart of proposed LDSP method. The first step is ap-
plied to generate initial candidate patches. The second and third step
follow the criteria of being shareable and discriminative respectively.

into several clusters so that the centers of patches to be sampled can
be generated. For one image I, Np patches are to be sampled; at
the same time, there are Nc connected components after segmenta-
tion: (i) If Np > Nc, K-means is applied to cluster Nc component
centroids (represented as the coordinates in image space) into Np

clusters. The centroids of newly-generatedNp clusters are treated as
the centers of Np sampled patches; (ii) If Np ≤ Nc, Nc component
centroids are taken directly as the centers of sampled patches and the
remaining (Np −Nc) centers are generated by random sampling.

Considering the complexity of scene images, the first situation
is more likely to occur. Fig. 2 gives the example how our proposed
sampling strategy performs.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of KSCC. (a) Original image, (b) Segmented im-
age in which connected regions sharing the same color is a connected
segmentation component, (c) Centroids of segmentation components
shown in the original image, (d) Centroids of segmentation compo-
nent shown in the segmented image, (e) Patch centers generated by
clustering all centroids in (c), (f) Patches sampled by KSCC.

2.2. Hierarchical Clustering and Co-occurrence Re-clustering

2.2.1. Hierarchical Clustering and Cross Validation

Patch similarity measurement is the crucial component to seek visu-
ally similar patches. Histogram of Oriented Gradient (HOG) [13] is
used as alternative option for similarity measurement in our work.

The properties of hierarchical clustering make it the most suit-
able for seeking visually similar patches. Firstly, for visually sim-
ilar patches, the only prior knowledge is features of these patches

are similar. Secondly, in sampling step, there may be some highly-
overlapped patches or similar patches sampled from repeated pattern
from one single image. However, similar patches from single im-
age should be discouraged as shareable patches. Thus, the complete
distance distmax(Ci, Cj), ensuring patches with smaller Euclidean
distance between features to be clustered, is applied in hierarchical
clustering; meanwhile, clustering patches sampled from the same
image I is prevented by setting corresponding distance to infinity:

distmax(Ci, Cj) = max
∀pi∈Ci,∀pj∈Cj

dist(pi, pj),

dist(pi, pj) =

{
∞ pi, pj ∈ I

dist
(
HOG(pi), HOG(pj)

)
otherwise

,

(1)
where Ci is one cluster, pi is one patch in cluster Ci, pi, pj ∈ I
indicates two patches are sampled from the same image and
dist

(
HOG(pi), HOG(pj)

)
is the Euclidian distance between

HOG features of patches pi and pj .
Hierarchical clustering and cross validation, as described in Alg.

1, are combined in the first-step clustering:

Algorithm 1 Hierarchical clustering and cross validation
Input: S: Initial patch set for one category generated by KSCC;

N : Patches sampled from non-scene images; NP : Number of
patches to be detected with highest SVM scores;

Output: C: Clusters of visually similar patches;
1: S → S1, S2 (S1, S2: equal sized disjoint sets);
2: Ci,j ← hierarchical cluster{Si} (1 ≤ i ≤ 2, 1 ≤ j ≤M);
3: while not converge do
4: for 1 ≤ j ≤M do
5: SVM1,j ← svm train{C1,j , N};
6: C1,j ← svm detect{SVM1,j , S2, NP };
7: end for
8: swap{S1, S2}, swap{C1, C2};
9: end while

10: return C;

2.2.2. Co-occurrence Re-clustering

After observing the clusters created by hierarchical clustering and
cross validation, we find that although the similarity among all the
patches in the same cluster is low, there are some pairs of patches
that will occur in the same cluster for more than once; at the same
time, these two patches show a high degree of similarity. It inspires
us to use the times of two patches existing in the same cluster as the
measurement of similarity, which we denote as co-occurrence.

Co-occurrence re-clustering is established based on the cluster-
ing results of previous step, which to some extent implies desired
relationship between elements within the same cluster. Thus, co-
occurrence re-clustering will preserve the initial clustering informa-
tion and lead to a better re-clustering consequence.

The following part is the detailed procedure of co-occurrence
re-clustering: after the first-step clustering, there are Nc created
clusters and Ne elements in these clusters. The co-occurrence
matrix MCO ∈ RNe×Ne is constructed according to the fol-

lowing illustration: MCO(i, j) =

{
Co(ei, ej) i 6= j

0 i = j
and

Co(ei, ej) denotes how many times the i-th and the j-th element
occur in the same cluster. Considering MCO is a symmetric ma-
trix, we sort the elements in the upper triangular matrix of MCO ,
denoted as M ′CO , in descend order: M ′CO

(
O1(1), O1(2)

)
≥

1318



M ′CO

(
O2(1), O2(2)

)
≥ · · · ≥M ′CO

(
OM (1), OM (2)

)
≥ cothr ≥

M ′CO

(
OM+1(1), OM+1(2)

)
≥ · · · ≥ M ′CO

(
ON (1), ON (2)

)
,

where N =
[
(Ne − 1) × Ne

]
/2,

(
Oj(1), Oj(2)

)
is the index of

j-th largest element in M ′CO and cothr is a co-occurrence threshold
to ensure two elements that have a higher co-occurrence value to be
clustered. Co-occurrence re-clustering is conducted from O1 to OM

and only NP elements will remain in each of finally-clustered clus-
ters. The selection is based on solving the following optimization
problem in Eq. (2) and detailed procedure is shown in Alg. 2:

argmax
∀e1,··· ,eNP ∈C

′
k

NP−1∑
l=1

NP∑
m=l+1

Co(el, em). (2)

Algorithm 2 Co-occurrence re-clustering
Input: M ′CO: Upper triangular matrix of MCO; M : Number of

element pairs with co-occurrence higher than cothr;
Output: C′: Re-clustered clusters;

1: Initialize: the number of existing re-clustered clusters N ′c = 0,
existing re-clustered clusters C′ = ∅;

2: for 1 ≤ j ≤M do
3: if (eOj(1) /∈ C

′) ∧ (eOj(2) /∈ C
′) then

4: C′N′c+1 ← {eOj(1) ∪ eOj(2)};
5: end if
6: if (eOj(1) ∈ C

′
k1

)∧(eOj(2) ∈ C
′
k2

)
(
k1, k2 ∈ [1, N ′c]

)
then

7: C′k1
← {C′k1

∪ C′k2
}, C′k2

= ∅;
8: end if
9: if (eOj(m) /∈ C′) ∧ (eOj(3−m) ∈ C′k)

(
m ∈ {1, 2}

)
then

10: C′k ← {C′k ∪ eOj(m)};
11: end if
12: Update N ′c, C′;
13: end for
14: for 1 ≤ k ≤ N ′c do
15: Solve Eq. (2) and C′k ← ∪

Np
i=1ei;

16: end for
17: return C′;

2.3. Discriminative and Shareable Patch Selection

2.3.1. HOG matrix and feature epitome

As we conclude from the property of DSPs, the representative power
is highly associated with the issue of occurrence relationship be-
tween one patch and one image. The strategy frequently used for
measuring the relationship is sliding window method: a bounding
window is moving throughout the whole image to generate the re-
sponse map, which is very time-consuming. Thus, feature epitome,
a condensed summarization of patch features, is proposed to calcu-
late the occurrence relationship more efficiently.

To generate the feature epitome for one patch, the first step is to
construct the HOG matrix, which is inspired by how HOG feature is
constructed: each pixel in the cell calculates a weighted vote for an
edge orientation histogram channel based on the orientation of the
gradient element centered on it and the votes are accumulated into 9
orientation bins over the cell [13]. The 9-dimensional vector can be
further reshaped into a matrix HOG Mc ∈ R3×3. As suggested in
[13], 2× 2 cells are grouped into a block and matrix HOG Mb for
4 cells are put together according to the spatial layout and a HOG

block HOG MB =

[
HOG Mc 1,1 HOG Mc 1,2

HOG Mc 2,1 HOG Mc 2,2

]
∈ R6×6

(a)

(b)

(c)

Fig. 3. Construction of HOG matrix. (a) Construction of HOG cell
and HOG block, (b) Input patch (64×64), (c) HOG matrix (42×42).

is generated and normalized finally. For the whole image, final HOG
matrix HOGM is constructed by grouping HOG MB of extracted
overlapped blocks together as illustrated in Fig. 3.

The feature epitome is inspired by epitome [14], which is a con-
densed version containing the essence of the textural and shape prop-
erties of the original image. Given one image I , assume that Np

patches are sampled from the image and HOG matrix of these Np

patches are given by Hk ∈ Rm×n(k ∈ [1, Np]), the feature epit-
ome e = (µ, σ) (µ, σ ∈ RM×N ,M > m,N > n) is calculated
by means of Gaussian Mixture Model (GMM): in each iteration, the
generative model uses a hidden mapping Γk that maps HOG matrix
Hk to the coordinates Ek in e. In Expectation step, mapping Γk is
updated, while µ, σ are updated in Maximization step.

2.3.2. Occurrence quantization

The occurrence probability concerning one patch P and one image
I is indicated by the HOG matrix H ∈ Rm×n of patch P and the
feature epitome e = (µ, σ) of image I, as illustrated in Eq. (3):

p(H|µ, σ)

= max
∀r∈[1,M−m+1]
∀c∈[1,N−n+1]

r+m−1∏
i=r

c+n−1∏
j=c

N
(
H(i, j);µ(i, j), σ(i, j)

)

= max
∀r∈[1,M−m+1]
∀c∈[1,N−n+1]

r+m−1∏
i=r

c+n−1∏
j=c

1√
2πσ(i, j)

e
− [H(i,j)−µ(i,j)]2

2σ(i,j)2 .

(3)
The probability p(H|µ, σ) is the maximum response of the

product of Gaussian distribution probability of all pixels over all
possible patch locations in the epitome space. In information theory,
the minus logarithm of probability is denoted as self-information:

SI(P |I) = min
∀r∈[1,M−m+1]
∀c∈[1,N−n+1]

r+m−1∑
i=r

c+n−1∑
j=c

{
log[
√

2πσ(i, j)]

+
[H(i, j)− µ(i, j)]2

2σ(i, j)2

}
.

(4)

Smaller self-information SI(P |I) is an indication that majority
of the information existing in the patch P can be acquired from the
image I. In other words, there is a higher probability that the similar
pattern of patch P exists in the image I.

The power of one cluster of patches to represent one category
is defined as Pre(C, Ivalj ) =

∑Num(j)
i=1 min

∀P∈C
SI(P | Ival j,i),

where Ival j,i is the i-th validation image for the j-th category and
Num(j) is the number of validation images for the j-th category.
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Assume Cn,m is the m-th cluster for the n-th category, the represen-
tative power concerning whole validation images is calculated by

P (Cn,m, Ival) =

N∑
j=1

Num(j)∑
i=1

min
∀P∈Cn,m

SI(P |Ival j,i)f(n, j),

(5)
where N is the number of scene categories and function f(n, j) ={

1 n = j

−1 n 6= j
indicates whether DSPs and validation images belong

to the same category. For each cluster in each category, the represen-
tative power P (C, Ival) is calculated and the clusters with relatively
larger P (C, Ival) will be selected. Fig. 4 shows examples of clusters
of DSPs for MIT 67 scene database[15] generated by LDSP method.

Fig. 4. Examples of discriminative and shareable patches. Five
patches in one row belong to the same cluster.

3. EXPERIMENTAL RESULTS

In the experiment, MIT 67 scene database that contains 67 scene
categories is tested to evaluate proposed classification framework.
For each category, there are about 80 training images and 20 testing
images. Grayscale [16] training images are discarded and 15 images
are selected from remaining training ones as validation images.

Five kinds of novel feature encoding (FE) methods are investi-
gated in the experiment: (i) Vector Quantization (VQ); (ii) Locality-
constrained Linear Coding (LLC); (iii) Kernel-codebook encoding
(KCB); (iv) Fisher Vectors (FV); (v) Vector of Locally Aggregated
Descriptors (VLAD). The implementation of the feature encoding
methods provided by [17] is applied in the experiment.

3.1. Scene Classification with SIFT Feature

SIFT features are extracted from discriminative and shareable
patches and validation images. In the experiment, the number of
clusters of DSPs used ranges from 4 to 8 and classification per-
formance is evaluated by mean Accuracy Precision (mAP). The
experimental results with SIFT features are shown in Table 1.

3.2. Scene Classification with Deep-learned Patch Feature

In our work, we attempt to introduce a deep-learned patch feature
(DLPF) into the well-known bag-of-words model to classify scene
images. The main idea of DLPF is to take advantages of the con-
volutional neural network (CNN) models trained from the ImageNet

Table 1. Classification results using varying number of clusters of
discriminative and shareable patches with SIFT feature encoding.
The best classification performance with SIFT feature is 59.38%.

FE
Range 4 5 6 7 8

VQ 49.27% 49.97% 50% 49.8% 49.61%
LLC 48.89% 48.48% 48.42% 48.48% 48.89%
KCB 49.77% 50.29% 51.23% 49.92% 51.09%
IFV 59.11% 58.88% 59.38% 58.88% 57.65%
VLAD 56.98% 57.39% 58.4% 56.45% 56.09%

Table 2. Classification results using 6 of clusters of discrimina-
tive and shareable patches with deep-learned patch feature encoding.
The number in parentheses indicates the output layer of CNN.

FE
Feature DLPF SIFT

VQ (35) 51.82% 50%
IFV (37) 59.73% 59.38%

VLAD (37) 57.15% 58.4%

[18] database. The output of one layer that is close to the terminal
layer in the CNN is considered as the feature of the input patch.

In the experiment, patches of size 32 × 32, with sampling step
size 16, are sampled to generate the deep-learned patch features and
the pre-trained CNN model named imagenet-vgg-verydeep-16 [19]
is applied. The experimental results are shown in Table 2.

Finally, we compare our classification result with some other
single-feature method in Table 3 and our best classification result
outperforms the results of other single-feature methods on MIT 67
scene database. The slight improvement between SIFT-based and
DLPF-based methods may result from the fact that much fewer
DLPFs are extracted in codebook generation compared with SIFTs.

Table 3. Comparisons of mean Accuracy Precision (mAP) with
other proposed single-feature methods on MIT 67 scene database.

Methods mAP(%)
Patches[9] 38.10
LPR[20] 44.84

RICA[21] 47.89
Part Detector[4] 51.40

DSFL[3] 52.24
DeCAF[7] 58.52

LDSP+SIFT 59.38
LDSP+DLPF 59.73

4. CONCLUSIONS

We propose learning discriminative and shareable patches method
to classify scene images. The LDSP method is capable of auto-
matically discovering discriminative and shareable patches of both
high between-class dissimilarity and within-class similarity com-
pared with previous works. Meanwhile, the deep-learned patch fea-
ture is introduced into the bag-of-words model. The experimental
results show that proposed DLPF can improve the mAP compared
with applying SIFT feature. The best classification result also out-
performs other single-feature methods on MIT 67 scene database.
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