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ABSTRACT 

 

In this paper, we propose a novel Gaussian Mixture 

Language Model to address the issues of the traditional bag 

of visual words (BoVW) based model. We firstly take full 

advantage of image semantic information to learn a new 

distance metric which can achieve the minimal loss of image 

information, and then we train Gaussian Mixture Models 

(GMM) using this distance metric. Given a test image, a 

visual document is firstly constructed using this codebook, 

and then its category is determined by estimating the 

maximum probability using the language model under a 

specific category. Experiments show that the codebook 

generated by our method can effectively reflect the image 

semantic information and highly suitable the language model, 

and confirm that the proposed method is satisfactory and 

competitive in comparison with the traditional BoVW based 

method as well as other state of the art methods. 

 

Index Terms— Image classification, Bag of visual 

words, Gaussian mixture models, Distance metric learning, 

Language model 

 

1. INTRODUCTION 

 

Image classification is a problem of great interest in both 

research and applications. Although it has been studied for 

many years, it is still challenging within the field of 

multimedia and computer vision. The bag of visual words 

(BoVW) models [1-5], one of the most successful models 

for the object categorization and image classification tasks, 

has generally shown promising performance, and thus has 

been widely adopted in these fields. But the BoVW based 

methods are subject to some limitations. One is the 

ignorance of spatial information of the feature patterns. 

Recently, many advanced methods have been proposed to 

address this problem, and have achieved good performance: 

see, e.g., sparse coding [2], local coordinate coding (LCC) 

[3], super-vector coding [4], and etc. 

Another limitation of BoVW is that much valuable 

information is missed when constructing the codebook 

(visual words) by clustering local features in the Euclidian 

space without considering the correlations among the visual 

words. Recently, most of the research work focused on 

enhancing the discrimination of the codebook to alleviate 

this issue. For instance, Jurie and Trigs [6] proposed a 

scalable radius based clustering method, Wu and Rehng [7] 

used histogram intersection kernel to create codebooks, 

Gemert et al. [8] studied soft-assignment codebook model, 

Zhou and Fan [5] presented a joint dictionary learning 

algorithm (JDL), and Jiang et al. [9] reported a label 

consistent K-SVD algorithm to learn a discriminative 

dictionary. But all of these methods used k-means based 

clustering algorithms to construct codebooks, which is 

difficult to avoid information loss, and didn't consider the 

spatial correlation between the different visual words. We 

think that if we could minimize the information loss when 

constructing the codebook, and meanwhile, take full 

advantage of the correlations among different visual words, 

the classification performance would be significantly 

improved. 

In this paper, we adopt a probabilistic framework and a 

semantic distance to address the issues in face of BoVW. An 

image is represented by a set of local features, which can be 

interpreted as a probabilistic distribution in the feature space. 

Hence, we first use image local features with semantic 

information to learn a new distance measure through 

distance metric learning (DML), and construct codebooks by 

Gaussian Mixture Models (GMM) trained by this new 

distance measure, which can minimize the image semantic 

information loss. Then, we consider the spatial correlations 

among the visual words in an image, which form a document. 

Finally, for all these visual documents, we make use of 

language model (LM) widely used in the field of text 

information retrieval for image classification. We term this 

method as Gaussian Mixture Language Model. Compared 

with BoVW, our method takes into account both the 

information loss and the correlations among the visual words. 

Experiments confirm the effectiveness of our method. 

There are some existing studies related to ours. Works 

[10-13] were based on probabilistic frameworks: [10] used 

GMM to build codebooks; [11] estimated a GMM for each 

image and used its parameters as the feature; [12] presented 

a global Gaussian features method; [13] used multinomial 

distribution to construct BoVW. All of these methods didn't 

leverage any image semantic information. Works [14-19] 

introduced semantic information for DML: [14-15] used a 

DML based k-means algorithm to build codebooks; [16-17] 

calculated image similarities directly through local features 

measured by DML; [18-19] adopted a set of different 
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features for DML. The difference between our method and 

the above DML based methods is that we combine a 

semantic based distance metric with GMM. Recently, the 

study of visual words spatial correlation for image 

classification is relatively few. [20] proposed a traditional 

LM for image classification, [21] presented a word spatial 

arrangement (WSA) strategy, but the experimental results 

were not satisfactory. In our method, we utilize a distance 

metric based GMM to construct visual documents, then 

apply it to LM for classification, and achieve satisfactory 

performance. 

This paper is organized as follows. Section 2 describes 

the DML using semantic information, and section 3 

introduces visual words generation based on GMM with a 

new distance metric, and then is the language model. Section 

4 reports experimental results. Finally, we conclude our 

work and shed light on the future work in section 5. 

 

2. SEMANTIC DISTANCE METRIC LEARNING 

 

In order to preserve the semantic information and minimize 

the semantic loss in the codebook generation process, we 

introduce a novel distance metric learning scheme using 

image segmentation semantic information. The objective of 

DML (distance metric Learning) is to find an optimal 

Mahalanobis metric A from training data with class labels or 

general pairwise constraints [19]. In our method, we extract 

the pairwise constraints from training images for distance 

metric learning. The pairwise constraints come from well 

segmented images. For example, the object region 

information of each image is provided by Caltech101 dataset 

[22]. We formalize the representation of the features 

pairwise constraints set
N

iiii yxx 121 )},,{(  , where xi1 and xi2 

are two d-dimensional features. And if both xi1 and xi2 are on 

the same semantic parts of objects, then yi = 1, otherwise yi = 

-1. It is worth noting that how to select pairwise constraints 

can greatly effect the classification performance. We comply 

with such selection criterion: the features xi1 and xi2 are of 

the same semantics but with large distance in Euclidean 

space, or vice versa. 

Given the pairwise constraints information, the goal of 

our task is to learn a distance metric A to effectively measure 

distance between any two visual features xi1 and xi2, 

following formula can represent this framework: 
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To find an optimal metric A, the distances between 

visual features of the same semantics should be minimized, 

and meanwhile distances between features of different 

semantics should be maximized. Based on this principle, we 

formulate this distance metric learning problem into the 

following optimization: 
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where || •  ||A is the Mahalanobis distance between two 

features under metric A. Parameter λ is a constant, b is a 

threshold. We use a stochastic gradient search algorithm to 

solve this optimization problem. The algorithm is described 

in following: 

 
In step 7, λi and ϕi denote the ith eigenvalue and 

eigenvector of A. The algorithm is an iterative process, its 

computational complexity is determined by the product of 

the number of iteration and the size of training data, namely 

O(tN). Empirically, this iterative algorithm converges 

quickly with no more than 5 iterations. 

 

3. GAUSSIAN MIXTURE MODELS WITH DML 

 

3.1. Visual words based on GMM 

 

Most of the methods of generating the visual words have 

focused on the k-means clustering or its variations. In this 

paper, we utilize the GMM to construct the codebook. Each 

Gaussian component of GMM represents a visual word. 

Differetly from the traditional GMM [10-12], we adopt our 

semantic distance metric A to build GMM. Moreover, for 

each image category, we respectively train a GMM, and 

Semantic Distance Metric Learning Algorithm 

Input:  pairwise constraints N

iiii yxx 121 )},,{( 
; 

parameter λ, and learning rate parameter γ; 

Procedure: 

 Initialize  A = I, b= b0, iteration t = 1; 
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1313



obtain a set of visual words. Finally, we form a global 

codebook by gathering all the visual words from all the 

image categories. Note that we share the distance metric A 

among all the GMMs.  

We model a GMM for the local feature x of an image, 

and its form is: 





M
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),|()(  ,                                       (3) 

where x is a d-dimensional local feature, in our experiments, 

we use densely sampled SIFT features [1, 23], wk, μk and Σk 

denote the weight , mean vector and covariance matrix of the 

k
th

 Gaussian component respectively, and M is the total 

number of Gaussian components. Our model is different 

from the traditional GMM, in that we introduce a distance 

metric A for the above Gaussian distribution: 
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This means that we add the semantic information to 

GMM, and make it represent image content better than 

general GMM. The GMM parameters are derived by using 

the Expectation Maximization (EM) algorithm. In order to 

reduce the number of parameters to be estimated so as to 

alleviate the computational cost for parameter estimation, we 

use diagonal covariance matrices 
M

kk 1}{  , which has been 

proved to be effective and computationally efficient [11]. 

When GMM is trained for each image category, we 

obtain N GMMs, where N is the number of image categories, 

and for simplicity, we share the same M number of 

component for each GMM. Thus we totally obtain the N×M 

size of codebook for the whole image categories.  Now, for a 

specific local feature x of an image, we assign it to a visual 

word (a Gaussian component) which has maximum posterior 

probability for all N×M Gaussian components: 
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(5)  

where V(x) denotes the visual words generating function, 

pk(x,Ci) is a posterior probability for the k
th

 Gaussian 

component in GMM generated by the image category Ci. For 

the N×M size of codebook, we let: v1, v2, ... ,vk,i=v(i-

1)×M+k , ... ,vN×M , where i and k mean the k
th

 Gaussian 

component in the i
th

 GMM. So we assign the local feature x 

to a visual word V(x) = v(i-1)×M+k. Thus, for each image, we 

can have a visual document constituted by a sequence of 

visual words using formula (5). 

 

3.2. Visual language model 

 

Traditional BoVW model does not consider the spatial 

correlation among the visual words, which might provide 

additional information to help image classification. So, we 

can use visual documents to construct language model.  

When constructing visual documents, we only consider 

the visual word and its neighbor using bigram model, which 

is mainly from the viewpoint of computational cost and 

efficiency [24].  

In our bigram model, each visual word is conditionally 

dependent on its one neighbor only. When all the bigram 

models corresponding to each image category are 

constructed, the new test image is then assigned to the most 

probable category by maximizing the posterior probability: 
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where DnewImage denotes the visual words document of the 

new test image, p(Ck) is a prior probability for the kth 

category. P (vi | vj, Ck) denotes the number of co-occurrence 

of vi and its left neighbor vj in category Ck.  

 

4. EXPERIMENTS AND RESULTS 

 

We use the Caltech101 dataset to carry out our experiments. 

The Caltech101 dataset [22] contains 101 classes, including 

animals, vehicles, flowers, etc., with high shape variabilities. 

Particularly, each image is provided with object 

segmentation information, which is the outline of each 

object in these images. So we can conveniently extract the 

semantic information (namely pairwise constraints set 
N

iiii yxx 121 )},,{(  ) for the distance metric learning. We 

partition the whole dataset into 5, 10, 15, 20, 25, 30 training 

images per class and according, there are no more than 30 

testing images per class. We repeat the experimental process 

by 5 times with different and randomly selected training and 

testing images to obtain reliable results. And the evaluation 

target we used is the average classification accuracy for all 

categories. 

The 128-dimentational SIFT [1, 23] features extracted 

from 16×16 pixel patches were densely sampled from each 

image on a grid with the step size of 8 pixels. The 

experiments include two parts. 

 

4.1. The performance effect of DML and codebook size 

 

Firstly, we test the effect with or without the distance metric 

on GMM and k-means, and the performance of different 

sizes of visual codebook using our language model classifier. 

In experiments, we fix the number of training images in each 

class to be 30. The number of pairwise constraints N for 

DML is set as 16160 (Actually, we obtain the best result 

with this value in our experiments. ). The experimental 

results are plotted in Fig. 1. 
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Fig. 1.  The effect of different codebook size on classification performance 

In Fig. 1, we test four methods based on codebooks: 

GMM with distance metric, k-means with distance metric, 

traditional GMM and traditional k-means, all of which use 

our proposed LM for classification. Since M denotes the 

number of components for each GMM, the size of codebook 

is M×101, and M takes values from 1 to 10 for testing, 

meaning that the codebook size takes values from 101 to 

1010. 

As shown in Fig. 1, after introducing the distance metric, 

the classification performance is greatly improved, and 

meanwhile, the result of GMM is better than that of k-means. 

We obtain the best result using the proposed method. We 

also find that the performance improves with increasing the 

codebook size for our method, but for k-means, the 

performance drops when the codebook size exceeds 600. 

Finally, we can see that without the distance metric, the 

classification performance of LM using k-means or GMM 

based on codebooks is not very well, but with the distance 

metric for GMM, we get the best performance, which 

confirms that the combination of DML-based GMM and 

language model is effective. 

 

4.2. Comparison with other classifiers 

 

We compare our method with baselines [25-27], and SVM 

and Naive Bayes classifiers using BoVW generated by our 

GMM model. Experimental results under all different 

numbers of training samples per class are shown in Fig. 2. 
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Fig. 2.  Performance Comparison with different classifiers 

We first use the DML-based GMM to construct 

histogram features based on BoVW, and then test the SVM 

and Naive-Bayes classifiers using these features. As shown 

in Fig. 2, our method is much better than SVM and Naive-

Bayes models, which further testifies our idea, namely that 

the codebook based on GMM trained by DML is very 

suitable for LM for image classification. Furthermore, our 

model outperforms several baselines [25-27], because our 

model achieves the best classification accuracy of 0.67 

under 30 training images per class among all these methods. 

We also compare our model with state of the art 

methods. Table 1 shows some state of the art results on 

Caltech101 dataset. 
Table 1.  Image classification results with state of the art methods 

Training images 5 10 15 20 25 30 

Dist_GMM 0.39 0.55 0.60 0.63 0.66 0.67 

Wang et al. [3] 0.51 0.59 0.65 0.67 0.70 0.73 

NBNN [28] - - 0.65 - - 0.70 

Jia et al. [23] - - - - - 0.75 

Dist_GMM_SC      0.79 

 

The fifth row in Table 1 shows the excellent results [23] 

in recent research. Our approach does not yet reach 

approaches to their performance, but when combined with 

sparse coding (SC) strategy, our method can achieve the best 

result (As shown by Dist_GMM_SC in Table 1). 

Furthermore, in Fig. 1, we can see that the trend of the 

performance of our method increases gradually with the rise 

of the codebook size.  

Finally, we also experiment and learn that the training 

data of DML have influence on the performance. So, we 

conclude that there is still much room for our method to be 

improved. 

5. CONCLUSION 

 

This paper presents a novel image classification method. We 

trained GMM with a semantic distance metric for the visual 

codebook generation, and then construct visual documents 

using this codebook for a language model classifier. Our 

method overcomes the drawbacks of the conventional 

BoVW model which suffers from semantic and spatial 

information loss. Furthermore, we also learned the 

advantage of the language model combined with GMM 

based visual words. The experiments on Caltech101 dataset 

confirmed the effectiveness of our method. The proposed 

method achieved the best performance compared with 

conventional methods. And compared with the state of the 

art excellent results, our method is also competitive and 

satisfactory. 

In the future, we will explore the more efficient and 

automatic selecting method of semantic pairwise constraints 

for DML, and meanwhile we will find more effective visual 

words sequence for the language model. We believe these 

two aspects can further improve the image classification 

performance. 
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