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ABSTRACT

Based on pattern uniformity measure and the number of ones
in the Local Binary Pattern (LBP) codes, this paper proposes
an Improved Local Binary Pattern (ILBP) operator to describe
local image texture more effectively. The ILBP operator dis-
covers an important group of basic primitives such as lines,
T-junctions, and cross-intersections, which are ignored by u-
niform LBP operator. Such local primitives are as crucial as
those represented by uniform patterns for recognition tasks.
The resulting ILBP feature is more discriminative than tradi-
tional LBP feature although they are both invariant in terms of
monotonic gray-scale variation and rotation transformation.

Index Terms— Texture classification, local binary pat-
tern, rotation invariance

1. INTRODUCTION

Natural surfaces generally exhibit some repetitive gray-scale
variations or patterns which are usually referred to as texture.
Texture classification plays a significant role in pattern recog-
nition and computer vision applications such as object recog-
nition, medicine image analysis, material surface inspection,
image retrieval, and etc [1].

Early works focus on statistical analysis of texture images
such as the co-occurrence matrix method [2]. Later, model-
based methods, e.g. Gaussian Markov Random Fields (GMR-
F) [3] were introduced. Furthermore, signal processing meth-
ods such as Gabor filtering [4] and discrete wavelet transform
[5], provide efficient multi-resolution tools for analyzing tex-
tures. These techniques can achieve impressive classification
results on data sets collected under relatively well controlled
conditions. However, many of the above methods are sensi-
tive to geometric and photometric transformations.

In [6], Ojala et al. proposed a gray-scale and rotation in-
variant feature by observing the statistical distributions of u-
niform Local Binary Patterns (LBPs). LBP is a simple yet
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efficient operator to describe local image pattern. Uniform
patterns occur more frequently than others, and they have a
limited number of bitwise transitions in the circular binary
representation. In uniform LBP mapping, every uniform pat-
tern is assigned to a separate label and all others are collected
into a single label. The local primitives represented by uni-
form patterns consist of spots, edges, corners, and flat region-
s. To achieve rotation invariance, each uniform binary pattern
can be circularly rotated to its minimum value.

As the size of circular neighborhood increases, non-
uniform patterns account for more and more percent of all
patterns. For example, when the (8,1), (16,2), and (24, 3)
neighborhoods are used, non-uniform patterns contribute
12.8%, 33.1%, and 50.7%, respectively [6]. Merging all
non-uniform patterns under the same “miscellaneous” label
unavoidably leads to much information loss. To tackle this
issue, this paper proposes an Improved Local Binary Pattern
(ILBP) operator based on pattern uniformity measure and the
number of ones in the LBP codes. In the case of ILBP, infor-
mation in non-uniform patterns is extracted and also used for
texture classification.

Comparing with uniform LBP, the ILBP operator suc-
ceeds in discovering an important group of basic primitives
such as lines, T-junctions, and cross-intersections, which are
ignored by uniform LBP operator. Although such primitives
may not occur as frequently as those represented by uniform
patterns, they are also crucial for recognition tasks. Thus, the
ILBP feature is more discriminative than uniform LBP fea-
ture. This will be attested by experimental results on texture
data sets in Section 3. The ILBP feature is also invariant in
terms of monotonic gray-scale variation, rotation transfor-
mation, and histogram equalization processing. Finally, the
ILBP operator is computationally attractive because it can be
realized with a few operations and a look-up table.

2. IMPROVED LOCAL BINARY PATTERN

2.1. Local binary pattern

Given a pixel with coordinates (z,y), let us first define it-
s neighborhood, denoted by (P, R), as a set of P sampling
points on a circle of radius R around pixel (z,y). These sam-
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pling points around pixel (z, y) lie at coordinates

(@p,yp) = (z + Rcos(2mp/P), y — Rsin(2mp/P)).

Now, the LBP code for the center pixel (z,
follows [6, 7]:

y) is defined as

P-1
LBPpr =Y s(gp— gc)2", (1)
p=0
1, ifz>0
— bl - k) 2
s(z) {0, otherwise, @

where g, is the intensity value of the center pixel (z,y), and
gp 1s the intensity value of the p-th neighbor. When a neigh-
bor does not fall at integer coordinates, its intensity value is
determined by bilinear interpolation.

After the LBP code of each pixel (except pixels on the
boundary) in an image of size M x N is computed, a 27-bin
histogram of such LBP codes is commonly used for further
analysis of the image

M—-2N-2

=Y > O(LBPpg(x.y).k),k€[0,27 —

z=1 y=1

1], 3

where 6(u, v) is Kronecker delta function and

1, ifu=
(S(U,U) :{ , HHu /.U,

0, otherwise.

An extension to the original LBP operator is the so-called
uniform LBP, denoted here as LBPgQR The uniformity mea-
sure of an LBP pattern is defined as the number of bitwise
transitions in that pattern

U(LBPpRr) = Z |s(gpr1 = 9e) = 5(gp — 9c)|, @)

where gp is equivalent to gg. An LBP is called uniform if
U(LBPpr) < 2. In the computation of the LBPp?%; his-
togram, uniform patterns are used so that the histogram has
a separate bin for every uniform pattern and all non-uniform
patterns are accumulated into a single bin. As such, the num-
ber of patterns is reduced from 2 to P(P — 1) + 3. For
example, LBPg 1 consists of 256 patterns whereas LBPé”ﬁ
has only 59 patterns.

The original rotation invariant LBP operator based on u-
niform patterns, denoted here as LBPp'}%?, is defined as

P-1

—g.), ifU(LBPpg) <2,
LBPrqu p;o S(gp g«) 1 ( P,R) (5)

P+1, otherwise.

An example of applying LBPg 1, LBP3, and LBFP{'*?
to a 3 x 3 image block is illustrated in (6), where for simplicity
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the center pixel is compared with its immediate 8-neighbors.
The eight bits obtained from intensity comparisons can be
collected in any order (we put together them clockwise, s-
tarting from the uppermost, leftmost bit). Note that in this
example “11100010” is a non-uniform pattern as U = 4, so
it is labeled 58 (i.e. P(P — 1)+ 2) for LBP¢? and 9 (i.e.
P +1) for LBPg'2.

641327148 1171 LBPg; = 226,

16]32]16|={ 0| - [ 0 |= { LBPY? = 58, (6)

481161 8 1/ofo LBPi2 =9,
(11100010)5

2.2. Improved local binary pattern

As mentioned in Section 1, non-uniform patterns account for
more and more percent of all patterns as the size of the in-
volved neighborhood increases. For example, Ojala et al. has
noticed that above 50% of all patterns are non-uniform for
natural texture images when the (24, 3) neighborhood is used
in tradition LBP operator [6]. It is worth pointing out that
some of such non-uniform patterns are indeed statistically in-
significant, and hence noise-prone and unreliable. In contrast,
the rest of such non-uniform patterns are statistically signif-
icant and their occurrence probabilities can be estimated re-
liably. Thus, accumulating all non-uniform patterns into a
single bin discards a large amount of texture information.

Analyzing local binary pattern obtained by the LBP op-
erator, we find that a bitwise transition from O to 1 in the
circular representation of the pattern always accompanies a
bitwise transition from 1 to 0 and vice versa. Since the u-
niformity value U(LBPp r), as defined in (4), corresponds
to the number of spatial transitions in the pattern, it can only
take an even number between 0 to P. Another observation is
that some non-uniform patterns with U(LBPp ) > 2 also
represent an important group of basic primitives, e.g. lines,
T-junctions, and cross intersections, as shown in Fig. 1. Evi-
dently, such primitives are crucial for recognition tasks.

In order to extract information in all patterns, and mean-
while keep the resulting feature vector compact, we propose
an improved local binary pattern operator, denoted here as
ILBPpR. It assigns every uniform pattern to a separate la-
bel, ranging from 0 to P(P —1)+1. In other words, the ILBP
code is equivalent to the LBP code if it is uniform. Howev-
er, comparing with LBP;?R, the treatment of non-uniform
patters is totally different for ILBPp . For LBP%, all
non-uniform patterns are assigned to a “miscellaneous” la-
bel, whereas for I LB Pp g, non-uniform patterns with a fixed
uniformity value are given a separate label. Consequently,
ILBPpphas P2 — £ +1(e. P(P—1)+2plus & — 1)
distinct output values in total.

To achieve rotation invariance, a locally rotation invariant
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Fig. 1. Some basic primitives detected by I LBPSTfI. White
and gray rectangles correspond to bit values of 0 and 1 in
binary patterns.

ILBP can be defined as
P-1
s(gp, — gc), IfU(LBP, <2,
ILBPy, - p;o (9p — 9¢) (LBPpR) < o
P—-1+ %, otherwise,

where U is defined in (4). By doing so, the [ LBP];?R oper-
ator has %P distinct output labels. In practice, the mapping
from LBPp rto ILBPprorlILB prf R can be implemented

with a lookup table of 2P elements, and then the histogram of
ILBPppRrorl LBPI’;f R can be easily obtained.

3. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed ILBP operator
on two texture data sets: RotIlnv_16_10 [6] and Outex [6]. For
both data sets, we use the Nearest Neighbor (NN) classifier
with G-statistic [8] distance measure, as defined in (8).

B

- Z sy log(my, + sp), (®)

b=1

D(s,m) =

where s and m are the ILBP histograms for the testing and
training samples; B is the number of bins; s; and my, are two
sample probabilities at bin b. A testing sample is assigned
to the class of the training sample with minimum G-statistic
distance.

3.1. Experiments on RotInv_16_10

The RotInv_16_10 data set is previously utilized to conduc-
t rotation invariant texture classification in [6]. Textures are
presented at 10 different rotation angles (0°, 20°, 30°, 45°,
60°, 70°, 90°, 120°, 135°, and 150°). For each class, there
are 1210 16 x 16 training samples and 70 180 x 180 testing
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Fig. 2. Samples from RotInv_16_10 at particular angles.

Table 1. Classification accuracies (%) on Rotlnv_16_10.
Training LBP};?I“%Q ILB P};f R
angle 8,1) (16,2) (24,3) (8,1) (16,2) (24,3)

0° 682  96.2 98.7 678 976 97.6
20° 86.1 99.0 989 863 999 99.9
30° 84.7  98.7 99.1 853  99.7 99.4
45° 76.1 99.1 976 76.6  99.6 99.4
60° 847 983 992 850 984 98.6
70° 842  99.1 982 84.6  99.7 98.2
90° 693  97.6 100.0  68.1 97.8 99.5
120° 84.4  98.6 986 854 995 99.4
135° 76.0  98.6 96.7 762 989 97.5
150° 84.4 977 980 850 9838 99.2

Mean 79.8 983 985 80.0 99.0 98.9

samples, with 121 training samples and 7 testing samples per
angle. Hence, there are a total of 20480 ((1210 + 70) x 16)
samples in Rotlnv_16_10. It should be stressed that such s-
mall size of training samples increases the difficulty of texture
classification significantly. Fig 2 shows some testing samples
from RotInv_16_10, with one image per class.

We adopt the same experimental setup as that in [6]. The
experiments are repeated ten times. For each run, the 16 x 16
samples of just one rotation angle are used as training data
and the samples of the other nine rotation angles are used as
testing data. Hence, in this case, we have 1936 16 x 16 train-
ing samples and 1008 180 x 180 testing samples.

Table 1 shows classification accuracy rates on Rotln-
v_16_10. We observe from Table 1 that the average perfor-
mance improvement of ILBP}'p over LBPR'# is 0.2%,
0.7%, and 0.4% respectively when (P, R) is (8,1), (16,2),
and (24, 3). Since the classifier is trained with samples of just
one rotation angle, this setup is a true test for different LBP
operators’ ability to produce a rotation invariant description
of local region. Thus, experimental results on Rotlnv_16_10
show that ILBP}', is more discriminative than LBPp'?
although they are both invariant to rotation transformation.



3.2. Experiments on Outex

The Outex data set [6] is comprised of textural images from
a wide variety of real materials. Outex also provides some
ready-made test suits to evaluate algorithms for various types
of texture analysis. In our experiments, we use two test suit-
s: Outex_TC_00010 (TC10) and Outex TC_00012 (TC12),
which are created for rotation invariant texture classification,
and rotation & illumination invariant texture classification, re-
spectively.

The same 24 classes of textures are contained in TC10
and TC12, where each texture is captured using 3 different
illuminations (“horizon”, “inca”, and “tI84”) and 9 different
rotation angles (0°, 5°, 10°, 15°, 30°, 45°, 60°, 75° and 90°).
For each of 24 textures, we have 20 128 x 128 samples for
each illumination and rotation angle. The experimental setups
for TC10 and TC12 are as follows:

e TC10: 20 samples in each texture class with illumina-
tion “inca” and 0° angle are served as training data, and
160 samples in each class with the same illumination
but the other 8 rotation angles are reserved as testing
data. Hence, there are 480 (24 x 20) training samples
and 3840 (24 x 8 x 20) testing samples in total.

e TCI12: The classifiers are trained with the same train-
ing samples as TC10 but tested twice with all samples
captured using the other two illumination condition-
s: “tl84” (problem 000) and “horizon” (problem 001).
Therefore, there are a total of 480 (24 x 20) training
samples and 4320 (24 x 9 x 20) testing samples in both
problems.

Table 2 shows the classification results of LBPp'* and
1 LBP];”fR on TC10 and TC12, respectively. From Table 2,
we can make the following findings.

First, ILBP}'y, always outperforms LBPE'% on both
test suits. It is in accordance with our analysis in Section 2.2
that I L B P}, has more discriminative ability than LB Pp/i*.
For example, above 1% improvement is obtained on TC10 re-
gardless of the values of (P, R). The largest gain on TC12 is
3.1%, obtained when (P, R) = (16, 2) and the samples with
‘horizon’ illumination condition are used as testing data.

Second, the accuracy rates deteriorate clearly when the
illumination conditions used for capturing training and test-
ing samples are different. For example, the performance of
ILBP{'&2 drops from 91.7% to 78.7% if we change the illu-
mination used for testing data from ‘inca’ to ‘horizon’. This
validates that changing illumination conditions significantly
increases the difficulty of texture classification and thus the
TC12 setup is more challenging than TC10.

4. CONCLUSION

By analyzing the weakness of uniform LBP operator, this pa-
per proposes an ILBP operator based on pattern uniformity
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Table 2. Classification accuracies (%) on TC10 and TC12.

LB Pﬁf}:‘f ILB P,Ef R
(P,R) TCI0 TC12 TC10 TC12
‘184’  ‘horizon’ ‘t184°  ‘horizon’
(8,1) 842 650 63.7 854 66.4 65.1
(16,2) 894 824 75.6 91.7 835 78.7
(24,3) 953 852 81.3 96.3 86.3 81.3

measure and the number of ones in the LBP codes. ILBP is
invariant in terms of monotonic gray-scale change, histogram
equalization operation, and rotation transformation. A ma-
jor advantage of ILBP over traditional LBP is that it detects
a large group of local primitives from non-uniform patterns.
Therefore, the ILBP feature makes a better tradeoff between
the discriminative ability and robustness. Finally, ILBP is
computationally attractive and well suited for real-world ap-
plications because it can be realized with a few operators and
a look-up table.
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