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Abstract—Most texture analysis techniques require training
data to perform classification or retrieval of images. In many
practical situations, the amount of data representing different
texture classes can be too limited to satisfy the training of
a reliable classifier. Therefore, finding an effective feature of
texture is very useful to cope with a variety of applications.
This paper presents the extension of the two-point variogram to
multiple-point variogram of images for texture feature extraction,
which is also robust to noise and computationally economic. The
matching of the variogram functions for pattern classification
can be enhanced with the use of a spectral distortion measure
without the requirement of training data. Experimental results
and comparison with other methods, which require training data,
suggest the usefulness of the proposed approach.
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I. INTRODUCTION

The concept of texture is still not well-defined, the aim of
texture analysis is therefore to acquire some rigorous mathe-
matical formulations that can distinguish different classes of
texture in images. This difficulty makes texture analysis an
on-going challenging problem in image classification and re-
trieval. A large number of techniques have been developed for
texture analysis, where a collection of important developments
in this field were reviewed in [1]. Recent developments and
applications of texture analysis and classification can be found
in [2]-[8].

In general, methods for texture analysis consist of two main
domains: structural and statistical [9]. While the structural
approach analyzes an image in terms of a transform to expose
the detail of its structure, the statistical approach examines the
statistics of the properties of an image. This study explores a
spatial statistical methodology for extracting effective texture
feature of an image based on the notion of the variogram of
an image. In fact, the use of the variograms, which form the
fundamental concept of geostatistics [10], has been proposed
for texture analysis over the years [11]-[17]. The departure
of the present study from other variogram-based methods
is that it introduces the formulation of the multiple-point
variogram of an image, while other methods apply the two-
point variogram to capture the spatial relationship of pixels
in an image. Advantages of the multiple-point variogram
over the two-point variogram for image analysis are two-fold:
better classification accuracy and faster computational speed. A
logical basis for the adoption of the multiple-point variogram
is that mathematical measures that are used to quantify the
dissimilarity or distance between objects can be either a vector

or a scalar. The distinct difference between these two classes
can be appreciated by their definitions: scalars are quantities
that are described by a magnitude, whereas vectors are those
that are characterized by both a magnitude and a direction.
The latter class conveys more information than the former.
Furthermore, this study utilizes a physically reasonable and
computationally tractable tool of spectral distortion measures
to robustly measure the dissimilarity between two spectra of
the variograms.

The rest of this paper is organized as follows. Section
II presents the extension of the two-point variogram to the
multiple-point variogram, which is well-suited for image anal-
ysis. Section III describes the matching of variograms using
as spectral distortion measure known as the log-likelihood
ratio distortion. Finally, experimental results and discussion
are given in Section IV.

II. THE MULTIPLE-POINT VARIOGRAM OF IMAGES

Let Z, x, and h be a random function, a spatial location,
and a lag distance in the sampling space, respectively. The
random function Z(x) is assumed to be second-order station-
ary, which implies the mean m and variance σ2 are location-
independent: m(x) = m and σ2(x) = σ2, for all locations x
in the space. The variogram of the random function is defined
as [10], [18]

2γ(h) = V ar[Z(x)− Z(x+ h)], (1)

where γ(h) is the semi-variogram of the random function. This
definition of the variogram, 2γ(h), or semi-variogram, γ(h),
assumes that the random function changes within the space,
but γ(h) is independent of spatial location and depends only on
the distance of the pair of the considered variates. To simplify
technical jargon, the semi-variogram is now referred to as the
variogram, unless mathematical expression requires a precise
definition.

Based on Equation (1), the variogram is equivalent to

γ(h) =
1

2
E
[
{Z(x)− Z(x+ h)}2

]
(2)

Let Z(xi), i = 1, 2, . . . , n, be a sampling of size n,
the unbiased estimator for the variogram, which is called the
experimental variogram, of the random function is expressed
as
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γ(h) =
1

2N(h)

N(h)∑
i=1

[Z(xi)− Z(xi + h)]
2
, (3)

where N(h) is the number of variable pairs separated by h.

The experimental variogram defined in Equation (3) is
known as the two-point variogram in geostatistics (not to be
confused with multiple-point geostatistics [19]). Taking the
advantage of both spatial and sequential information of an
image, the two-point variogram can be readily extended to
the multiple-point variogram of an image as follows.

Let Z(xi) be the either the pixel values of an image row
i or column i, and Z(xi + h) the pixel values of an image
row i + h or column i + h: xi = (xi1, xi2, . . . , xip) or xi =
(x1i, x2i, . . . , xpi), assuming that the image has equal numbers
of rows and columns for simplified mathematical expression.
The multiple-point variogram of an image can be defined as

γ(h) =
1

2M(h)

M(h)∑
i=1

||Z(xi)− Z(xi + h)||2, (4)

where M(h) is the number of pairs of image rows and columns
that are separated by distance h, and || · || is any inner product
induced norm on Rp (the Euclidean norm is used in this study);
moreover, the exponent of 2 can be omitted to simplify the
expression, which is analogous to the use of the absolute value
of the pixel difference for the variogram [11].

III. VARIOGRAM MATCHING WITH LOG-LIKELIHOOD
RATIO DISTORTION MEASURE

Given an experimental variance at lag h, γ(h) can be
approximated as a linear combination of the past p variances,
such that

γ̃(h) = −
p∑

i=1

aiγ(h− i) (5)

where ai, i = 1, . . . , p are the linear predictive coding (LPC)
coefficients [20], assumed to be constant over the range of the
variances, and to be optimally determined.

The error between γ̃(h) and γ(h) is

e(h) = γ(h) +

p∑
i=1

aiγ(h− i) (6)

By minimizing the sum of squared errors, the pole param-
eters {ai} of the LPC model can be determined as follows.

a = −R−1 r (7)

where a is a p×1 vector of the LPC coefficients, R is a p×p
autocorrelation matrix, and r is a p× 1 autocorrelation vector
whose elements are defined as

ri =

N∑
h=0

γ(h)γ(h+ i), i = 1, . . . , p. (8)

TABLE I. CLASSIFICATION RATES (%) OF TEN-TEXTURE IMAGE
GROUP OBTAINED FROM TWO-POINT AND MULTIPLE-POINT VARIOGRAMS.

Two-point variogram Multiple-point variogram
Image ID DE DLLR DE DLLR

D4 100 100 97.22 100
D9 100 100 100 100
D19 61.11 73.61 61.11 69.44
D21 84.72 97.11 81.95 100
D24 77.78 98.61 91.67 100
D28 80.56 93.06 76.39 83.33
D29 34.72 44.11 52.78 69.44
D36 37.50 38.89 34.72 36.11
D37 86.11 86.11 90.28 93.06
D38 80.56 88.89 83.33 93.06

TABLE II. COMPARISON OF CLASSIFICATION RATES (%) OF
TEN-TEXTURE IMAGE GROUP.

Filtering methods (with training) 52.6 (average), 67.7 (best)
Spectral histogram (with training) 83.1
Two-point variogram (DLLR) (no training) 82.0
Multiple-point variogram (DLLR) (no training) 84.4

Let S(ω) and S′(ω) be the spectral density functions of a
p-th order all-pole model of the variograms γ(h) and γ′(h),
respectively, where ω is normalized frequency ranging from
-π to π. The spectral density S(ω) is defined as [20]

S(ω) =
σ2

|A|2
, (9)

where σ2 = aTRa, and A = 1 + a1e
−iω + . . .+ ape

−ipω.

The log-likelihood-ratio (LLR) distortion measure between
S(ω) and S′(ω), denoted as DLLR(S, S

′), is defined as [21]

DLLR(S, S
′) = log

a′TRa′

aTRa
, (10)

where a′ is the vector of the LPC coefficients of S′.

IV. RESULTS AND DISCUSSION

The images used in this experiment are of the well-known
Brodatz database [22]. The size of the original images is
640 × 640 pixels, which are obtained from [23]. The test

TABLE III. CLASSIFICATION RATES (%) OF TWO-TEXTURE IMAGE
GROUPS.

Figure (a) Figure (b) Figure (c)
Two-point variogram 100 100 100
Multiple-point variogram 100 100 100

TABLE IV. CLASSIFICATION RATES (%) OF SIX-TEXTURE IMAGE
GROUP OBTAINED FROM TWO-POINT AND MULTIPLE-POINT VARIOGRAMS

USING DLLR .

Image ID Two-point variogram Multiple-point variogram
D4 75.00 80.56
D5 100 100
D12 100 100
D17 100 100
D84 100 100
D92 98.61 97.22
Average 95.60 96.30
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Fig. 1. Ten-texture 640× 640 Brodatz image image group, from left to right: 1st row: D4, D9, D19, D21, and D24; 2nd row: D28, D29, D36, D37, and D38.

Fig. 2. Ten-texture 640 × 640 Brodatz image image group, degraded with white Gaussian noise of 0.01 variance and 0.3 mean, from left to right: 1st row:
D4, D9, D19, D21, and D24; 2nd row: D28, D29, D36, D37, and D38.
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Fig. 3. Classification rates of ten-texture image group versus white Gaussian
noise variance of 0.01 and variable mean.

images are divided into two sets, which are after [24]: 10-
texture and 2-texture image groups. The 10-texture group
includes D4, D9, D19, D21, D24, D28, D29, D36, D37, and
D38. The 2-texture groups consist of D4 and D84, D12 and

D17, and D5 and D92. Figure 1 and Figure 4 show the
images of the 10-texture and 2-texture groups, respectively.
To test the performance of the proposed method without the
need for training data, the experiment was set up using the
same procedure as described in [25]. Each original image was
divided into 9 non-overlapping sub-images (except 5 columns
and 5 rows of pixels for the corresponding sub-images in the
last row-wise and column-wise partitions), yielding each sub-
image of size 215 × 215 pixels. Thus, a perfect classification
(100%) for each test sub-image is the successful search of 8
closest matches.

For the 10-texture image group, the classification rate
obtained from the two-point variogram using the Euclidean
norm and LLR distortion measure are 74.31% and 82.08%,
respectively; and the multiple-point variogram resulted in
76.95% using the Euclidean norm, and 84.44% using the LLR
distortion measure. These results show that the multiple-point
variogram performs better than the two-point variogram, and
both cases suggest the preference of the LLR over the Eu-
clidean norm. Table I shows the individual classification rates
obtained from the two-point and multiple-point variograms
using the Euclidean norm and LLR distortion measures, in
which D29 was largely better classified by the multiple-point
variogram. The comparison of the results obtained from the
variograms and the filtering [24] and spectral-histogram meth-
ods [26], which requires training data, are shown in Table II.
These comparative results demonstrates the high performance
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(a)
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Fig. 4. Two-texture 640×640 Brodatz image groups, from left to right: (a):
D4 and D84, (b): D12 and D17, (c): D5 and D92.

0 5 10 15 20 25 30
0

1000

2000

3000

4000

5000

6000

7000

8000

h

γ(
h)

0 5 10 15 20 25 30
300

400

500

600

700

800

900

1000

1100

h

γ(
h)

(a)

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

h

γ(
h)

0 5 10 15 20 25 30
400

500

600

700

800

900

1000

h

γ(
h)

(b)

0 5 10 15 20 25 30
1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

h

γ(
h)

0 5 10 15 20 25 30
400

500

600

700

800

900

1000

h

γ(
h)

(c)

Fig. 5. Variograms of D5 (a), D92 (b), and D4 (c) where the left and right
figures are two-point and multiple-point variograms, respectively.

of the multiple-point variogram for texture classification. To
test the robustness of the proposed approach with the use of
the LLR, the images were degraded with white Gaussian noise
with variance of 0.01 and variable means: 0.001, 0.005, 0.01,
0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. It is interestingly
observed that adding noise to the texture, the classification
rates using either the two-point or multiple-point variograms
were stable or even improved up to the noise mean of 0.6,
where the highest improvement (87.22%) for both variograms
is at the noise mean of 0.4. Figure 2 shows the ten-texture
image group degraded with mean of 0.3 and variance of 0.01.
Figure 3 plots the classification rates obtained from the two-
point or multiple-point variograms versus the noise levels. Due
to the stochastic nature of the texture, the addition of noise at
some certain levels to the images allows the variograms to
better distinguish different types of similar textures. Figure 3
shows the classification by the two-point variogram that failed
sharply at the noise variance of 0.6 (82.08% vs. 74.86%), but
slightly for the multiple-point variogram (84.44% vs. 82.64%).

Figure 5 presents the plots of the two-point and multiple-
point variograms of D5 and D92, as shown in Figure 4(c).
It has been pointed out that the classification of this pair of
images was very difficult for many texture analysis techniques
[24]. Both variograms of this pair of images can discriminate
the difference between these two textures, and with the use
of the LLR distortion measure, a perfect classification was
achieved. Table III lists the classification rates of the two-
texture image groups, in which both variograms achieved the
perfect results (zero classification errors) for the three pairs of
images. As discussed in [24], the minimum classification errors
obtained among 9 texture feature extractors, using learning
vector quantization (requiring training data), were 1.9 (co-
occurrence) for Figure 4(a), 0.6 (Daubechies) for Figure 4(b),
and 2.5 (discrete cosine transform) for Figure 4(c).

Furthermore, Table IV shows the classification rates of
the six images shown in Figure 4, where most classication
rates are maximum, except for D4 (75% for two-point var-
iogram, and 80.56% for multiple-point variogram), and D92
(98.61% for two-point variogram, and 97.22% for multiple-
point variogram) The plots of the two-point and multiple-point
variograms of D4, which presented in Figure 4(a), are shown
in Figure 5. Although the classification rate for D92 obtained
from the multiple-point variogram is lower than the two-point
variogram, its total classification average (96.30%) is higher
than the two-point variogram (95.60%). Once again, these
results demonstrate that the high performance of the multiple-
point variogram.

For an image of 256 × 256 pixels, the time taken for
executing the Matlab code on a computer ProBook 6570b,
Core i7, Windows 8, to calculate 30 lags for the two-point
variogram was 0.12 seconds, and multiple-point variogram was
0.04 seconds. This timing shows the multiple-point variogram
is 3 times faster than the two-point variogram for such an
image size. For an image of size 640 × 640 pixels, the
computational times required for the two-point and multiple-
point variograms were 1.02 and 0.27 seconds, respectively;
which shows the multiple-point variogram is approximately 4
times faster than the two-point variogram.

1306



REFERENCES

[1] M. Mirmehdi, X. Xie, J. Suri, Handbook of Texture Analysis. London:
Imperial College Press, 2008.

[2] Y. Dong, D. Tao, X. Li, J. Ma, J. Pu, “Texture classification and retrieval
using shearlets and linear regression”, IEEE Trans Cybernetics, vol. 45,
pp. 358-369, 2015.

[3] Y. Song, W. Cai, Q. Li, F. Zhang, D.D. Feng, H. Huang, “Fusing
subcategory probabilities for texture classification”, Proc. IEEE Conf.
Computer Vision and Pattern Recognition pp. 4409-4417, 2015.

[4] Z. Zhu, X. You, C.L. P. Chen, D. Tao, W. Ou, X. Jiang, J. Zou,
“An adaptive hybrid pattern for noise-robust texture analysis”, Pattern
Recognition, vol. 48, pp. 2592-2608, 2015.

[5] A. Hafiane, K. Palaniappan, G. Seetharaman, “Joint adaptive median
binary patterns for texture classification”, Pattern Recognition, vol. 48,
pp. 2609-2620, 2015.

[6] T. Song, H. Li, F. Meng, Q. Wu, B. Luo, “Exploring space-frequency
co-occurrences via local quantized patterns for texture representation”,
Pattern Recognition, vol. 48, pp. 2621-2632, 2015.

[7] S. Hegenbart, A. Uhl, “A scale- and orientation-adaptive extension of
local binary patterns for texture classification”, Pattern Recognition, vol.
48, pp. 2633-2644, 2015.

[8] S. Wang, Q. Wu, X. He, J. Yang, Y. Wang “Local n-ary pat-
tern and its extension for texture classification”, IEEE Transactions
on Circuits and Systems for Video Technology, vol.25, 2015. DOI:
10.1109/TCSVT.2015.2406198. Publication in a future issue, but not
fully edited.

[9] M.S. Nixon, A.S. Aguado, Feature Extraction & Image Processing for
Computer Vision, 3rd Edition. Oxford: Academic Press, 2012.

[10] R.A. Olea, Geostatistics for Engineers and Earth Scientists. Boston:
Kluwer Academic Publishers, 1999.

[11] J.R. Carr, F.P. de Miranda, “The semivariogram in comparison to the
co-occurrence matrix for classification of image texture”, IEEE Trans.
Geoscience and Remote Sensing, vol. 36, pp. 1945-1952, 1998.

[12] A. Jakomulska, K.C. Clarke, “Variogram-derived measures of textural
image classification”, Quantitative Geology and Geostatistics, vol. 11,
pp. 345-355, 2001.

[13] P. Li, T. Cheng, J. Guo, “Multivariate image texture by multivariate
variogram for multispectral image classification”, Photogrammetric
Engineering and Remote Sensing, vol. 75, pp. 147-157, 2009.

[14] A. Balaguer-Beser, T. Hermosilla, J. Recio, L.A. Ruiz, “Semivariogram
calculation optimization for object-oriented image classification”, Mod-
elling in Science Education and Learning, vol. 4, pp. 91-104, 2011.

[15] T.D. Pham, “Geostatistical entropy for texture analysis: an indicator
kriging approach”, Int. J. Intelligent Systems, vol. 29, pp. 253-265, 2014.

[16] T.D. Pham, D.T.P. Le, J. Xu, D.T. Nguyen, R.G. Martindale, C.W.
Deveney, “Personalized identification of abdominal wall hernia meshes
on computed tomography”, Computer Methods and Programs in
Biomedicine, vol. 113,) pp. 153-161, 2014.

[17] T. Tsunoyama, T.D. Pham, T. Fujita, T. Sakamoto, “Identification of
intestinal wall abnormalities and ischemia by modeling spatial uncer-
tainty in computed tomography imaging findings”, Computer Methods
and Programs in Biomedicine, vol. 117, pp. 30-39, 2014.

[18] E. Gringarten, C.V. Deutsch, “Teacher’s aide variogram interpretation
and modeling”, Mathematical Geology, vol. 33, pp. 507-534, 2001.

[19] E. Meerschman, G. Pirot, G. Mariethoz, J. Straubhaar, M.V. Meirvenne,
P. Renard, “A practical guide to performing multiple-point statistical
simulations with the Direct Sampling algorithm”, Computers & Geo-
sciences, vol. 52, pp. 307-324, 2013.

[20] L. Rabiner, B.H. Juang, Fundamentals of Speech Recognition. New
Jersey: Prentice Hall, 1993.

[21] N. Nocerino, F. Soong, L. Rabiner, D. Klatt, “Comparative study of
several distortion measures for speech recognition”, Proc. IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, vol. 10, pp. 25-28,
1985.

[22] P. Brodatz, Textures: A Photographic Album for Artists and Designers.
New York: Dover, 1966.

[23] S. Abdelmounaime, H. Dong-Chen, “New Brodatz-based image
databases for grayscale color and multiband texture analysis”, ISRN
Machine Vision, vol. 2013, 876386, 2013. doi:10.1155/2013/876386.

[24] T. Randen, J.H. Husoy, “Filtering for Texture Classification: A compar-
ative study”, IEEE Trans Pattern Analysis and Machine Intelligence,
vol. 21, pp. 291-310, 1999.

[25] R. Picard, T. Kabir, F. Liu, “Real-time recognition with the entire Bro-
datz texture database,” Proc. Computer Vision and Pattern Recognition,
pp. 638-639, 1993.

[26] X. Liu, D. Wang, “Texture classification using spectral histograms”,
IEEE Trans Image Processing, vol. 12, pp. 661-670, 2003.

1307


