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ABSTRACT

Face recognition is widely used for a variety of applications,
such as identifying people for security purposes, as well as
photo album organization. A challenge is to perform accurate
face recognition when there exist partial occlusions of the face
such as scarves or sunglasses. Correlation Filters (CFs) are
an occlusion-tolerant object recognition method, potentially
suited to deal with partial occlusions. In this paper, we intro-
duce a new class of correlation filters called Masked Correla-
tion Filters (MCFs), that are designed specifically to handle
partial occlusions in face images. The benefits of using MCFs
are illustrated using well-known face image data sets.

Index Terms— Correlation Filters, Masked Correlation
Filters, Face Recognition, Partial Occlusion.

1. INTRODUCTION

Face recognition (FR) can be useful in a wide variety of se-
curity and commercial applications. One of the challenges
for real-world FR is partial occlusions of the face, such as
scarves and sunglasses. Since the work of Martinez [1], multi-
ple occlusion-tolerant FR methods have been proposed. Yang
et al. [2] used Gabor features for FR tolerant to partial occlu-
sions, while Luan et al. [3] used Robust Principal Component
Analysis to perform FR under varying occlusion and illumi-
nation.

Kumar et al. demonstrated that Correlation Filters (CFs)
are a useful method with attractive properties for FR [4]. CFs
also exhibit graceful degradation, meaning that as parts of the
image are occluded, the CF’s performance degrades slowly.
Recently, a new CF design known as Zero Aliasing Correla-
tion Filters (ZACFs) [5, 6] has been proposed to address the
circular correlation effects in CF implementations and it has
been shown that ZACFs lead to enhanced performance in ob-
ject recognition problems, including FR.

In this paper, we introduce Masked Correlation Filters
(MCFs), which are a new type of CF inspired by ZACFs,
aimed at the problem of image occlusion. MCFs use prior
knowledge of potentially occluded regions (e.g., facial re-
gions that will be occluded by scarves, sunglasses, etc. as
shown in Fig. 1), in order to not use the unreliable face image
information in the occluded regions. This is done by forcing

Fig. 1. Examples of Occluded Faces

Fig. 2. Overview of our proposed Masked Correlation Fil-
ters (MCFs) approach. Conventional CF designs (upper part)
result in templates that are non-zero for all values within the
image region, making it more susceptible to noise in occluded
regions. In MCFs (bottom part), constraining the occluded re-
gions to zero minimizes the noise sensitivity in the occluded
regions, resulting in a less noisy correlation output.

the occluded regions to zero in the CF template during the
filter design stage, which allows the filter design to instead
optimize over the unoccluded regions. In contrast, traditional
CF formulations yield templates that are not necessarily zero
in the occluded regions, which results in increased noise sen-
sitivity.

The rest of the paper is organized as follows. In Section 2,
we briefly review CFs and ZACFs. In Section 3, we introduce
MCFs and show how they can be used for occlusion-tolerant
recognition. In Section 4, we present experimental results for
partially occluded FR. Section 5 has our conclusions.
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2. CORRELATION FILTERS

We provide a brief review of CFs and use the Minimum Av-
erage Correlation Energy (MACE) [7] filter as an illustrative
example. The MACE filter is designed to produce sharply-
peaked correlation outputs with pre-specified values at those
peaks in response to centered authentic training images.

Let us assume that we train a filter using Q training im-
ages of size Nx,1 × Nx,2. Typically, we determine the filter
h̄ in the frequency domain using the vectorized 2D DFTs (of
size N1 ×N2,N1 ≥ Nx,1and N2 ≥ Nx,2) of the training im-
ages, x̄q , for q = 1, . . . , Q. In our notation, a symbol with an
overbar represents a frequency domain quantity and a symbol
with no overbar denotes a space domain quantity. The solu-
tion to the MACE filter is given by [7]

h̄ = D−1X̄
(
X̄+D−1X̄

)−1
u (1)

where superscript + denotes the complex conjugate transpose,
X̄ is a matrix withQ columns with its q-th column containing
the vectorized version of the 2D DFT of the q-th training im-
age. The diagonal matrix D = 1

N1N2Q

∑Q
q=1 X̄qX̄

+
q where

the diagonal matrix X̄q contains the vectorized 2D DFT of the
q-th training image along its diagonal, and u is the correlation
peak constraint vector, whose elements are typically set to 1
for positive class training images and to 0 for negative class
training images (if used). The MACE filter and other conven-
tional CF implementations have an important limitation: as
the correlation output is obtained as the inverse DFT of the
element-wise product of two DFTs, a circular correlation will
be obtained in the space domain. Circular correlation is an
aliased version of the desired linear correlation, and thus de-
grades the correlation peaks. In order to solve this problem, a
change in CF template design known as ZACF was recently
introduced [5, 6].

The Zero Aliasing MACE (ZAMACE) filter formulation,
is similar to the MACE filter formulation except that we intro-
duce zero aliasing (ZA) constraints that force the template’s
tail to zero. For example, for a 1D template h(n), we can
express these constraints as h(n) = 0 for n ≥ Nx. The ex-
pression for ZAMACE filter and its performance results are
well summarized in [6].

Note that the Optimal Trade-off Synthetic Discriminant
Function (OTSDF) filter is a CF that is similar to the MACE
filter. In the OTSDF formulation, the matrix D is replaced
by T = D + δI, where I is an identity matrix and δ > 0.
The inclusion of the identity matrix is to improve noise tol-
erance. The Unconstrained OTSDF (UOTSDF) filter is a CF
in which we remove the peak constraints, making the filter
computation less computationally complex.

3. MASKED CORRELATION FILTER (MCF)

We propose a new CF formulation, in order to create a filter
which is more tolerant to partial occlusions, assuming prior

knowledge of what regions will be occluded. Fig. 2 illustrates
the concepts of MCFs as compared with the basic concept of
CFs for FR. MCFs are best used when there are unoccluded
training images, and partially occluded test images in which
the regions that would be occluded are known a priori. Also,
a separate detector (e.g., sunglasses detectors or mouth scarf
detectors) can be employed prior to the recognition step. In
MCFs, we constrain regions of the CF template that would
correspond to the occluded region to zero. This is done so
that the CF design will not use image pixels that will be un-
available (due to partial occlusion) during testing. We again
use the MACE filter as an example, even though the MCF for-
mulation is general and can be applied to all CF formulations.
In this case, let us assume that we have prior knowledge that
the set of M spatial pixels in the region R will be occluded
during testing. Then we can modify the filter design formula-
tion to include these new constraints.

h(n) =
1

N

N−1∑
k=0

H(k)ej2πkn/N = 0 for n ∈ R (2)

The MCF constraints can be rewritten as

C+h̄ = 0M (3)

where C+ is the M × N IDFT matrix corresponding to the
spatial pixels in R, and 0M is a zero vector of length M . To
solve for the Masked ZAMACE filter, we can combine these
new constraints with the original ZA constraints, as well as
the traditional CF peak constraints to obtain

G+h̄ = k (4)

where G+ =
[

X̄+ A+ C+
]T

, k =
[

u 0L
]T

, A+

is the (N − Nx) × N IDFT matrix corresponding to the tail
pixels in the ZACF and 0L is the zero vector of length L =
N −Nx +M . This leads to the following MCF-ZAMACE

h̄ = D−1G
(
G+D−1G

)−1
k (5)

4. NUMERICAL EXPERIMENTS

We conducted numerical experiments to test the performance
of MCFs compared with other filters. To investigate the
performance of MCFs, we tested CFs with three face im-
age databases: the CMU-PIE database [8], the AR database
[9], and the KACST database. The training sets were unoc-
cluded face images from the respective databases. There are
two classes of occlusions for which we performed testing:
sunglasses, and scarves. For each, we create a mask, con-
straining regions to zero centered at either the eyes, or the
bottom portion of the face, as shown in Fig. 3. We vary the
percentage occluded for the scarf occlusion from 0% to 60%.
For the simulated sunglasses occlusion, we vary the radius of
occlusion from 0 pixels to 50 pixels.
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Fig. 3. Occlusion Mask Examples

We use the UOTSDF to investigate four types of filter
design: traditional CF, ZACF, MCF, and Non Zero-Aliased
Masked Correlation Filter (NZMCF). NZMCF is the same
formulation as MCF, except G+ =

[
X̄+ C+

]T
. In ad-

dition to using the base training images, we also trained the
CFs using artificially occluded version of the training images.
This is done by setting the pixel values at the assumed oc-
cluded regions to 0 in the training images. The results for
these are designated using the “Training Occluded” prefix for
the appropriate CFs.

During the experimental procedure, we created one CF
per subject, and then applied each CF to each test image. The
correlation output is analyzed to obtain a Peak-to-Correlation
Energy ratio (PCE) score, which is defined as the ratio of the
square of the peak value of the correlation output to its total
energy. The CF corresponding to the highest PCE is classified
as the identified subject. We evaluate the CF methods based
on their rank-1 ID rate, which is defined as the ratio of the
number of correctly classified test images to the total number
of testing images.

4.1. CMU-PIE Database

The CMU-PIE database [8] contains face images with dif-
ferent pose, expression, and illumination variations. In this
study, we used frontal images of neutral expressions with
varying illuminations. Both the PIE-lights and PIE-nolights
subsets were used where ambient lights are on and off, re-
spectively. The PIE-lights database consists of 68 classes
with 24 images per class, while the PIE-nolights database
consists of 66 classes with 21 images per class. These face
images were converted to grayscale, cropped and resized to
resolution 128x128.

In the PIE database, we induced artificial occlusions to
simulate scarves and sunglasses in test images. This is done
using the same mask used to artificially occlude the training
images for Training Occluded CFs, shown in Fig. 3. The 3
training images used were indices 3, 7 and 16 (corresponding
to left, center, and right illuminations). Results for simulated
scarf occlusion are shown in Fig. 4, where we vary the per-
centage occluded from 0% to 60%. For simulated sunglasses
occlusion, we vary the radius of occlusion from 0 pixels to 50

(a) PIE-lights (b) PIE-nolights

Fig. 4. Simulated Scarf Rank 1 ID Rate of Traditional CFs,
ZACFs, NZMCFs, and MCFs on CMU PIE-lights and PIE-
nolights.

(a) PIE-lights (b) PIE-nolights

Fig. 5. Simulated Sunglasses Rank 1 ID rate of Traditional
CFs, ZACFs, NZMCFs, and MCFs on CMU PIE-lights and
PIE-nolights

pixels, as shown in Fig. 5.
Fig. 4 shows the results of artificial scarf occlusions.

MCFs are the most robust to increasing levels of occlusion,
whereas traditional CFs are the least robust at higher levels
of occlusion, for both types of occlusion. ZACFs are signif-
icantly more robust to occlusion than traditional CFs, but in
the sunglasses case, we see a small drop in performance at
the highest levels of occlusion. It is also interesting that using
artificially occluded training images does not improve results.

4.2. AR Database

The AR database [9] consists of over 4,000 face images from
126 subjects (70 men and 56 women). For each subject 26
images are taken of the subject over 2 sessions 2 weeks apart.
In each session, images were taken with varying facial ex-
pressions (neutral, smile, anger, scream), varying illumina-
tions (left light on, right light on, both side lights on), and 2
different types of occlusion (scarf and sunglasses). For our
experiments, we utilized a subset of the database for which
each subject had the full set of images, consisting of 119
subjects (65 males and 54 females). The greyscale images
were cropped and resized to resolution 128x128. Examples
of both unoccluded images and occluded images from the AR
database can be seen in Fig. 6.

Training images are of neutral expression with vary-
ing illumination. Testing images are varying illumination
while wearing either sunglasses or scarves. Fig. 7 shows

1295



Fig. 6. An example of AR database face images

(a) Scarf (b) Sunglasses

Fig. 7. Simulated Scarf and Sunglasses Rank 1 ID Rate of
Traditional CFs, ZACFs, NZMCFs, and MCFs on the AR
Database

that Masked CFs have the highest performance for both the
scarves and sunglasses cases, at 90.0% Rank 1 ID Rate for
scarves and 78.2% for sunglasses. This is in comparison
to ZACFs (87.2% and 66.1% respectively), and traditional
CFs (60.3% and 63.8% respectively). We also find that us-
ing artificially occluded training images does not seem to
significantly improve results.

4.3. KACST Database

The KACST database consists of face images from 150 sub-
jects. For each subject up to 18 types of images in 5 different
poses were taken. The pose variation consits of full frontal
view, as well as ±15◦ and ±30◦ from frontal view. Of the
18 types, one is of the subject wearing a cap, one with no
headwear, 2 side profiles with no headwear, and the 14 others
have the subject wearing a shemagh. There are 6 expression
images, 3 illumination images, 3 occlusion images, one image
with glasses, and one neutral image. Anyone interested in re-
ceiving the database should email KFID@kacst.edu.sa. For
our experiments, we utilized a subset of the database where
each subject has the full set of frontal images, consisting of
147 subjects. The greyscale images were cropped and resized
to 128x128 pixels.

For training images, we used neutral expression images
with neutral illumination, while the testing images were neu-
tral illumination wearing either sunglasses or scarves. Fig.
9 shows Masked CFs have the highest performance for both
scarf and sunglasses cases, at 60.5% Rank 1 ID Rate and
44.9% respectively. ZACFs have 50.6% and 35.4% Rank 1 ID
Rates, whereas traditional CFs perform at 32.0% and 21.2%
Rank 1 ID Rates. Here we find that in the scarf case using

Fig. 8. Example KACST database face images

(a) Scarf (b) Sunglasses

Fig. 9. Simulated Scarf and Sunglasses Rank 1 ID Rate
of Traditional CFs, ZACFs, NZMCFs, and MCFs on the
KACST Database

artificially occluded training images improves results.

5. CONCLUSIONS

Masked Correlation Filters (MCFs) are designed to take ad-
vantage of prior knowledge of where partial occlusions will
be located in test images, as well as the ZACF technique to
enhance performance. In the CMU-PIE, AR, and KACST
databases, we have found that ZACFs perform better than tra-
ditional CFs, even in the presence of occlusion. We also found
that masking seems to help performance for both traditional
CFs and ZACFs, and that using artificially occluded training
images did not seem to significantly improve results.

In summary, we have proposed Masked Correlation Fil-
ters (MCFs), a new method of correlation filters, for object
recognition under partial occlusion. Using prior knowledge
of the occluded region, we can compensate for the occlu-
sion, improving recognition performance. We tested MCFs
on 128x128 face images from the CMU-PIE, AR and KACST
databases, and found that MCFs can improve the performance
of correlation filters in the presence of large, continuous oc-
clusion. While MCF design needs prior knowledge of oc-
cluded regions, it may be possible to determine occlusions
using a soft-biometric detector (beards, sunglasses, etc.) [10].
MCFs could also be useful in other pattern recognition tasks,
such as automatic target recognition.
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