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ABSTRACT
Deep convolutional network has been widely used in face
recognition while not often used in face alignment. One of the
most important reasons of this is the lack of training images
annotated with landmarks due to fussy and time-consuming
annotation work. To overcome this problem, we propose a
novel data augmentation strategy. And we design an inno-
vative training algorithm with adaptive learning rate for two
iterative procedures, which helps the network to search an op-
timal solution. Our convolutional network can learn global
high-level features and directly predict the coordinates of fa-
cial landmarks. Extensive evaluations show that our approach
outperforms state-of-the-art methods especially in the condi-
tion of complex occlusion, pose, illumination and expression
variations.

Index Terms— Deep convolutional network, data aug-
mentation, adaptive learning rate

1. INTRODUCTION

Face alignment, namely detecting facial landmarks such as
eyes and noses, is a preprocessing stage for tasks like face
verification [1, 2], face recognition [3, 4] and face animation
[5, 6]. It was extensively studied in these years [7, 8, 9, 10, 11]
and achieved great success. However, when face images are
taken with partial occlusion and large head pose variations,
the localization of facial landmarks may become inaccurate.
Deep convolutional network has been shown to be effective
in extracting features and classification [1, 2, 12]. And it is
proved to be robust to occlusions [13]. Therefore, we use
deep convolutional network to directly predict the coordinates
of facial landmarks.

Although deep convolutional network has a strong ability
of learning feature, it needs to be trained from abundant sam-
ples. To make up for the lack of training images annotated
with landmarks, we propose a novel data augmentation strate-
gy including four operations: translation, rotation, horizontal
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flip and JPEG compression. In this way, the learned model
will be robust to low quality and variations in pose rotation.

During training, the choice of learning rate is very impor-
tant. We design an adaptive learning rate algorithm to train
the network which learns a mapping from faces to coordi-
nates of facial landmarks. Detailed experimental evaluations
show that our approach outperforms state-of-the-art methods.

The remainder of this paper is organized as follows. In
the next section, we discuss the related works of face align-
ment and analyse the characteristics of various approaches. In
Section 3 , we introduce data augmentation briefly and illumi-
nate the structure of our deep convolutional network, follow-
ing which the training algorithm is elaborated. Several com-
parative experiments are carried out in Section 4 to show the
precision and robustness of our model. Section 5 concludes
this paper.

2. RELATED WORK

Significant progress on face alignment has been achieved in
recent years. Conventional approaches can be divided into
two categories: optimization-based and regression-based.

Optimization-based methods minimize the error between
estimated face shape and the true face shape. It’s very vital
for the error function to be able to be optimized well. AAM
[14, 15, 16] is a typical optimization-based method which re-
constructs entire face using an appearance model and min-
imizes the texture residual to estimate the shape. It’s well
known that AAM is sensitive to the initialization of parame-
ters. And the learned appearance models have limited capac-
ity to adapt complex variations, so it may not generalize well
on unseen faces.

Regression-based methods estimate landmark locations
explicitly by learning a regression function with the input of
image appearances. Xiong et al. [11] predict shape increment
by applying linear regression on SIFT features. Both Cao
et al. [7] and Burgos-Artizzu et al. [8] use boosted ferns to
regress the shape increment with pixel-difference features.
These methods mainly refine the prediction of the landmark
locations iteratively from an initial estimate, thus the final re-
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sult is highly dependent on the initialization. In contrast, our
deep convolutional network takes raw face images as input
without any initialization.

There are only a few methods based on deep learning so
far. Sun et al. [9] estimate the positions of facial landmark-
s with three-level cascaded convolutional networks. Zhang
et al. [17] train a deep convolutional network with multi-
task learning to improve the generalization of face alignmen-
t. Our method requires neither cascaded networks nor multi-
task learning, bringing about remarkable reduction in model
complexity, whilst achieving better performance.

3. OUR APPROACH

In order to solve the problem of the lack of training images,
we propose a novel data augmentation strategy. And we adap-
tively change learning rate with two iterative procedures to
ensure the network converge well during training.

3.1. Data augmentation

Before starting the face alignment, we need to carry out face
detection on the training images as preprocessing. Then we
can acquire a face bounding box for each image. The data
augmentation consists of three steps: translation and rotation;
horizontal flip; JPEG compression, as shown in Figure 1.

Fig. 1. New face patches derived from translation, rotation,
horizontal flip and JPEG compression. The face patches are
compressed with the JPEG qualities of 15, 45 and 75 respec-
tively.

Compared with previous data methods, we combine a va-
riety of augmentation strategies. During the first step, we s-
lightly translate or rotate the face bounding box which is used
for taking face patches. In this way, the training face patches
are increased for dozens of times (34 in our experiments). It
is worth mentioning that the new area contained in the face
bounding box is derived from the original image rather than
artificial setting, and the latter may has a bad impact on the
training process of network. The translation operation helps
to improve the robustness of landmark detection in the con-
dition of tiny face shift, especially in face tracking. And our

model can learn to adapt complex pose variation thanks to the
rotation operation.

In the next steps, we horizontally flip each face patch and
finally conduct JPEG compression with three different qual-
ity. Therefore, our network will be trained to be robust to
poor-quality images which is ubiquitous in the real case.

3.2. Deep convolutional network

Our deep convolutional network contains eight convolutional
layers followed by two fully-connected layers to learn global
high-level features. And every two continuous convolution-
al layers connect with a max-pooling layer. The convolution
operation is formulated as

yj =
∑
i

kij ∗ xi + bj , (1)

where xi and yj are the i-th input map and the j-th output map
respectively. kij denotes the convolution kernel between the
i-th input map and the j-th output map. bj is the bias of the
j-th output map. And ∗ denotes convolution. Max-pooling is
expressed as

yij,k = max
0≤m,n<h

{xij·h+m,k·h+n}, (2)

where each h × h local region in the i-th input map xi is
pooled to be a neuron in the i-th output map. The network is
based on VGG net [18] whose stacked multiple convolution-
al layers jointly form complex features. Figure 2 shows the
detailed structure of our network.

In order to accelerate the training of network, we add a
batch normalization layer [19] after each convolutional lay-
er. Batch normalization is scaling and shifting the normalized
input as

y = γx̂+ β, (3)

where x̂ = x−E[x]√
V ar[x]

, and the expectation and variance are

computed over a mini-batch from the training dataset. Af-
ter normalizing each convolutional layer, ReLU nonlineari-
ty (y = max(0, x))is added to speed up convergence. We
don’t operate ReLU on last two fully-connected layers in or-
der to preserve important information. The network input is
50× 50× 3 for color face patches. And the output of the last
layer is predicted coordinates of five landmarks: left eye cen-
ter (LE), right eye center (RE), nose tip(N), left mouth corner
(LM) and right mouth corner (RM).

To guarantee numerical stability and reduce computation-
al cost, we shrink the coordinates of landmarks with scale
factor λ. Our network uses the Euclidean loss

L =
1

2
(f − f̂)2, (4)

where f is a vector that consists of ground truth, and f̂ de-
notes predicted landmark locations. The gradient of loss L is
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Fig. 2. The structure of our network. The equation h × w × c beside each layer denotes that the dimension of map is h × w
and the number of map is c. Every two continuous convolutional layers share the same equation. The equation kh × kw/s/p
denotes that the filter size is kh × kw, and the stride and padding of filter are s and p respectively. The filter parameters of each
convolutional layer are identical, the same goes for max-pooling layers.

back-propagated to update network connection weights dur-
ing training. And we need to magnify predicted landmark
locations f̂ = f̂/λ as the final output.

3.3. Adaptive learning rate algorithm

Since the value of Euclidean loss may be several hundred or
even several thousand, it is highly likely that computer nu-
merical calculation scope may be exceeded in the process of
back propagation. So the choice of learning rate is very im-
portant when training our network. We propose an innovative
adaptive learning rate algorithm sketched in Algorithm 1.

Algorithm 1 The training algorithm with adaptive learning
rate.
Input: Network N with trainable initialized parameters Θ0,

training set Ω, validation set Φ, control parameters α, t,
k.

Output: Trainable parameters Θ.
1: Testing N and calculating the loss L0 on Φ;
2: Setting the learning rate η = α/L0 and calculating the

loss L on Ω;
3: while L > t do
4: TrainingN with back propagation (BP) [20] algorithm

and calculating L;
5: if l hasn’t been reduced for k iterations then
6: η = η · 0.1;
7: end if
8: end while
9: Setting η = α/L;

10: while not convergence do
11: Executing step 4 to 7;
12: end while

During early training period, the network link weights
will be changed sharply if learning rate is too large. Thus
we firstly assign learning rate depended on initial testing loss.

Then when network loss was reduced significantly, chang-
ing learning rate to be a larger value which will be decreased
adaptively in subsequent training process.

It should be noted that Algorithm 1 consists of two it-
erative procedures for adaptive learning rate decrease. The
training loss will be quickly reduced in the first procedure,
leading to significant reduction in computational cost. Dur-
ing the second procedure, the network is convergent if loss
tested on validation set is minimal and nearly unchanged.

4. EXPERIMENTS

We firstly investigate the advantages and effectiveness of our
training algorithm by comparing to the algorithm with only
one iterative procedure. Then we compare our approach with
previous works on two public test sets, LFPW [21] and AFLW
[22]. Our training and validation sets are identical to [9] and
have no overlap with the test sets.

LFPW is collected from the web and contains 1, 432 face
images which show large variations in pose, illumination, ex-
pression and occlusion. It shares only image URLs and some
are no longer valid, so we use only 1, 030 images provided by
[9].

AFLW includes 25, 993 face images gathered from Flickr.
It is more challenging than other datasets such as LFPW. We
use 2995 images of the dataset for testing as same as [17].

4.1. Algorithm discussions

Although the number of our original training images is only
10, 000, we can acquire dozens of times face patches, exactly
totally 2800, 000 (10, 000×35×2×4) through translation and
rotation, horizontal flip and JPEG compression in turn. When
training our network, the control parameters α, t, k are set to
be 0.015, 3 and 40, 000 respectively based on practical expe-
rience. If scale factor λ is too small, errors will be magnified
excessively. So we assign it to be 0.2.
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We train our network with adaptive learning rate algorith-
m and the algorithm with only one iterative procedure, re-
spectively. When removing the second iterative procedure,
the algorithm continuously runs the first iterative procedure
until converging. The relationship between the loss tested on
validation set and iterations of two different algorithms are
shown in Figure 3.

Fig. 3. The loss tested on validation set of our network vs. the
number of iterations with different algorithms.

During early iterations, the loss with two algorithms are
both decreased remarkably. But in later iterations, the loss
of our algorithm is reduced to a smaller value. The min-
imal loss of our algorithm and the other are 0.6823 and
0.7938 respectively. Although the difference of loss is just
0.1115, the difference of average distance is approximately√

0.1115/(λ2)× 2/5 ≈ 1.0559 in an image whose size is
50×50. Obviously the improvement is significant. Therefore
our algorithm is highly likely to search a more optimal solu-
tion with a larger initial learning rate in the second procedure.

4.2. Comparison with other methods

We evaluate our approach based on mean error, similar to
most previous works. The mean error is measured by the dis-
tances between estimated landmarks and the ground truths,
normalized with the inter-pupil distance. We compare with
state-of-the-art methods including ESR [7], RCPR [8], SDM
[11], cascaded CNN [9] and TCDCN [17] as shown in Figure
4 and Table 1. The results of some methods are shown in orig-
inal literatures or provided by later other literatures, and we
implement other methods which didn’t show their results on
related datasets. It is obvious that our approach outperforms
all the state-of-the-art methods and has a high accuracy for
each landmark even on the challenge AFLW.

Compared with cascaded CNN and TCDCN, using deep
convolutional network as same as ours, we require neither
cascaded networks nor multi-task learning. Our method takes
67 ms to process an image on a single Intel Core i5 CPU,
whilst cascaded CNN requires 120 ms. It’s clear that our
method is much faster.

Figure 5 shows several examples of landmark detection
using cascaded CNN and our approach respectively. We ob-
serve that two methods both have a good performance on

Fig. 4. Comparison of different methods on LFPW and
AFLW: the mean error over each landmark.

Table 1. The mean error on LFPW and AFLW.
Method LFPW AFLW
ESR [7] 5.36 12.4

RCPR [8] 4.58 11.6
SDM [11] 2.26 8.5

cascaded CNN [9] 2.10 8.72
TCDCN [17] 1.33 8.0
Our approach 1.17 7.42

these challenge images, but ours achieves higher accuracy in
detail. So the proposed method is robust to faces with com-
plex variations in pose, illumination, expression, occlusion
and quality.

Fig. 5. The results of cascaded CNN and our approach on
several challenge images.

5. CONCLUSION

We propose an effective deep convolutional network based on
data augmentation and adaptive learning rate for facial land-
mark detection. The former solves the lack of training images
and the latter contributes to converging to a more optimal so-
lution. Our approach directly predicts the coordinates of land-
marks using single network without any other additional op-
erations, whilst significantly improves the accuracy of face
alignment. And we believe that the proposed data augmen-
tation and training algorithm with adaptive learning rate can
also be applied to other problems like face recognition.
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