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ABSTRACT

Trajectory classification has been extensively investigated in
recent years, however, the problems about automatically
modeling unlabeled and incomplete trajectories are far from
being solved. In this paper, we propose a Cluster-based
Dictionary Learning (CDL) approach that firstly constructs
an initial cluster-based dictionary by K-means clustering and
incrementally updates by exploring the importance of the
label consistency constraint and classification optimization.
Finally, a multiple-category classifier for trajectory is
obtained with Locality-constrained Sparse Reconstruction
(LSR) that combines both sparsity and local adaptability for
robust trajectory classification. Experimental results show
that our approach outperforms several recent approaches.

Index Terms— Trajectory classification, Cluster-based
dictionary learning, Locality-constrained sparse
reconstruction

1. INTRODUCTION

Visual trajectory classification contributes to a variety of
applications [1, 2], including the identification of
crowdedness [3], behaviors, activities [1] and events [4] of
video scenes. Although extensively investigated, the limited
sizes of labeled sample sets [5], and the local variation and
noises of the trajectories [1] are still an open research
problems.

For trajectory representation [6] are commonly used as
feature vectors according to the movements of objects. On
trajectories of variable length, re-sampling and linear
interpolation strategies [7] are often used to align the vectors,
while function approximation methods[8], polynomial based
curve fitting, Haar wavelet transform, minimum error-based
polygonal approximation, B-spline curves, and Discrete
Fourier Transform (DFT) coefficients [6-8] etc. can be used
to improve the local adaptability of the representation.
Among these methods, LCSCA outperforms other
representations, for the least-square fitting procedure holds
better fidelity to trajectories and insensibility to the variation
of trajectory length [8]. Based on the representation,
trajectory similarity measure is defined [9-11]. DTW
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tolerates temporal misalignments, so it is usually taken by lots
of compromises.

On the other hand, various learning based features have
attracted attentions in recent years. Existing trajectory
clustering, i.e. Self-Organizing Map (SOM) [12], hierarchical
fuzzy K-means [13], and trajectory modeling, i.e. Gaussian
Mixture Models (GMMs) [5], hierarchical Bayesian Model
[14] and Hierarchical Hidden Markov Model [15], still have
the limitation of modeling trajectories incrementally to deal
with the scarcity of labeled training trajectories. Recently,
trajectory classification has been casted as a sparse
reconstruction problem [16-19][30]. Considering the
combination of the structural clustering [20] and the label
consistency constraint [21-23] with dictionary, a
discriminative dictionary can be learned to effectively
weaken the limitation of clustering based on the trajectory
centroid vectors. Moreover, locality is as important as
sparsity in trajectory representation [16], so Locality-
constrained Sparse Reconstruction (LSR) can be adaptive to
trajectory noises, incompleteness and local variation for
robust trajectory classification.

In this paper, we proposed a Cluster-based Dictionary
Learning (CDL) and Locality-constrained  Sparse
Reconstruction (LSR) for trajectory classification in
surveillance video, as in Fig.1. The framework includes two
stages: learning and classifying. Given a video scenario, we
firstly assign trajectories into clusters with K-means
clustering based on the LCSCA feature vectors. An initial
dictionary is obtained with the clustered trajectories and their
corresponding labels. Then, we incorporate a label
consistency constraint and optimal criteria into the objective
function to learn the dictionary. As the model separately and
incrementally updates the dictionary and the sparse code, the
set of labels is also updated according to clustering the sparse
reconstruction coefficients. In the trajectory classification
stage, a multiple-category classifier for trajectory is used to
estimate trajectory label based on the LSR with learned
dictionary.

The rest of the paper is organized as follows. We
describe the proposed CDL and LSR in section 2 and section
3. We demonstrate experimental results in section 4, and
conclude the paper in section 5.
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Fig.1. Overview of the proposed approach. (Better View in Color)

2. CLUSTER-BASED DICTIONARY LEARNING

In this section, we describe our CDL method in details. In the
learning stage, we firstly construct the initial dictionary with
the training vectors based on LCSCA and clustering labels
based on K-means. Then an updating label consistent K-SVD
(LC-KSVD) is used to learn an optimized dictionary for
classification. During this procedure, the incremental
dictionary learning is applied to update the model. When
given the learned dictionary, a multi-category classifier is
constructed and used for trajectories classification.

2.1. Trajectory Representation

LCSCA-based trajectory feature representation method [8] is
achieved by approximating each spatial-temporal trajectory
with a uniform cubic B-spline curve parameterized by time.
It is more robust than other point-based distances between
trajectories with variable length. Consequently, we extract
LCSCA-based feature vector as trajectory representation,
shown in Fig.1. Given a trajectorys, = {(P", P*),---,(P", P")}

no

where 7 is the length of trajectory, (P, P) represents n-th

position point of the trajectory. The control point-based
feature representation of 7 is ) = {(C1,C) e, (CHC) with

the predefined B-spline basis function in [19], p is the number
of control points, and (€,C) represents the p-th control

point, where ¢+ and ¢»represent its normalized x-coordinate
r r

and y-coordinate, respectively.
2.2. Cluster-based Dictionary Initialization

We firstly apply the K-means clustering [13] with DTW
distance [9] to cluster trajectories, which are represented by
the LCSCA control points. Given N trajectories as

T= [tl,~ . -,tN] e R7", we get the LCSCA feature vector v,

for each trajectory ¢, . K centroids are defined among N feature
vectors, y, is assigned to the cluster, the centroid ¢; has the

least DTW distance with y, . When all feature vectors

assigned, the positions of the K new centroids is recalculated.
We repeat the re-clustering and recalculation until J reaches
the local optima. Let Y be a set of p-dimensional N input

feature vectors, ie. ¥ = [yl,---,yN] e "V, Learning a

reconstructive dictionary D with M items for sparse
representation of ¥ can be achieved by solving the following
problem in Eq. (1). We initialize D' with N training vectors
as Eq. (2), where C¥ are the clustering results, and

f:l N/f =N
<D,X> = argmin"Y —DX"i s s.t.Vi,"xl."O <g. (1
DX

DO :[C“),~~-,C‘“,~~C(’”}, cw =[yf”w-,y(Nﬁ)]- )

2.3. Dictionary Learning and Optimization

There are two steps to learn the optimal D: (1) keeping D
fixed to find X-sparse coding; (2) keeping X fixed to find D -

SVD decompositions. Sparse coding X; on a discriminative
dictionary D can be used for classification by computing the
sparse representation X, of ), on given D using the

Orthogonal Matching Pursuit algorithm (OMP) [24]. While
separating the dictionary learning from the classifier learning
might make suboptimal for classification. As in [17, 25, 26],
it is possible to jointly learn the dictionary and classification
model by optimizing the dictionary. While inspired by the
intuition that a label consistency constraint on the sparse
codes makes the element in the dictionary D highly peak in
one class, a method named LC-KSVD is employed for
dictionary learning. With the definition in [21], the objective
function is rewritten and optimized as
(D,W,4,X)=argmin|Y,, —D

new
DW,A4,X

X,
stVi|x|, <e

Y =(r" Vo' JpH")

D,,=(D" ad \/EWT)T

where 4 and W is related to discriminative sparse code error
and classification error, respectively.« and g are useful for

©)

controlling the relative contribution between reconstruction
and label consistence regularization.

We also apply the same incremental framework to
update the model as training vectors come. During the
incremental dictionary optimization, the model separately
and incrementally updates the dictionary and sparse code by
LC-KSVD [21], the set of labels is also updated according to
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clustering the sparse reconstruction coefficients with respect
to the dictionary.

3. LOCALITY-CONSTRAINED SPARSE
RECONSTRUCTION

In the trajectory classification stage, a multiple-category
classifier for trajectory is used to classify a trajectory based
on the LSR with learned dictionary. LSR approach is
presented by author in [16] and describes how to partition the
trajectory, and how to perform sparse linear reconstruction
with locality-constrained dictionary.
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Fig.2. Examples of a class of similar trajectories and their
partitioned tracklets. Left: six partitioned tracklets from a
class of similar trajectories (blue curves). Right: the whole
trajectories with control points (red dots).
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The objective of trajectory partition is to divide a long
trajectory into tracklets, shown in Fig.2. Based on the fact
that trajectories of a same category should often have similar
shapes and share control points on the cubic B-spline curves.
We partition the trajectories into local tracklets (local shapes)
based on the control points and then align the tracklets via the
DTW algorithm to construct a local dictionary [16] as

D=[d, - d - d ], i=l.,p-1. @

where d={a|(i),a; (i),...,a, (i),...,a} (i)} represents the i-
th tracklets of J kinds trajectories in a scene after partition,
each class of trajectory holds K tracks. Accordingly, a long
feature vector is divided into a set of short sub-vectors, each
of which will be better represented by a linear model.

After partition, each tracklet # of T can be

approximately represented as a linear superposition of the
di just in the D as ¢ ~dy,, where y, represents the

coefficient vector for superposition. Because so many
trajectory routes in a scene, the dictionary is often large, a
tracklet can be represented with as few as tracklets of local
similarity, and ¥:should be sparse.

Then, a discriminate encoding and a loss weighted
decoding strategy for classification is further proposed.
Tracklets represent local shapes of trajectories, however, they
loss the global information trajectories. Therefore, a

combination of reconstruction results from multiple tracklets
is required for accurately classifying a trajectory. We propose
to use a discriminate code matrix M to perform multi-class
trajectory classification, element M, that corresponds to

assign the i-th tracklet to the j-th class is calculated as Eq.
(5). With the code matrix, a trajectory is finally classified by
using a loss-based decoding strategy. The objective is to find
a matrix that weights a loss function and adjusts the decisions
of the sparse reconstruction. The loss weighted decoding
process is described in [16].

0, if j+#argmin(s,
Tz aemn) iy =l-ds,w),. s
1, if j=argmin(s,)’ j=L..,N
J

i

c

4. EXPERIMENTAL RESULTS

We evaluate our approach on two trajectory datasets: the
CAVIAR (“INRIA”) and the Carpark. And we compare our
approaches with Hierarchical K-Means (HKM) [13], Parallel
Spectral Cluster (PSC) [29], GMMs [5].

4.1. Datasets

The CAVIAR dataset [27] contains a series of trajectories in
an entrance lobby with 11 entry-exit routes. The Carpark
dataset [28] contains 269 trajectories with 8 categories of
trajectories in three crossroads. Considering the traversal
orientations, we randomly select half of the trajectories per
category as training and the other half for testing, so we have
1100 trajectories in the training set and 1121 trajectories in
the testing set of CAVIAR, and 124 training trajectories and
145 testing trajectories in the Carpark.

4.2. Performance and comparison

In the CAVIAR dataset, we use the LCSCA with seven
control points to represent trajectories, and DTW distance to
measure the similarity between trajectories. In the
experiments, ¢ and g are respectively set to 0.01 and 1 to

learn the dictionary with 110 items (M=110). We evaluate the
classification ability of our approach compared with three
methods using 5, 15, 25, 35, 45, and 50 training samples per
category, respectively. The experimental results are
summarized in Table 1. Our approach consistently
outperforms other approaches. The essential reason for the
good classification performance, even with only a few
training samples, is that the updating label consistency
constraint ensures the input vectors from the same class
always have similar sparse codes, even with a small training
sample set. Moreover, we show some samples of classified
categories in Fig.3. The samples in a row are the results of a
method, and the samples in a column are the trajectories
classified into a same cluster. There are well classified to
cluster 1, while the cluster 4, cluster 9 and cluster 19 have
some misclassification. The samples from cluster 9 and
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cluster 19 have similar positions and shapes, so they are prone
to be misclassified. The results demonstrate our approach

more discrimination ability among clusters.

CAVIAR dataset.

performs more effectively than others, for our approach have Method Number of training samples per class
5 10 15
HKM [13] 17.9 33.7 37.5
Table 1. Comparisons of classification accuracy (%) in the PSC [29] 18.5 36.9 458
GMMs [5] - - 38.4
Number of training samples per class Our approach 38.1 66.7 69.2

Method

Table 2. Comparisons of classification accuracy (%) in the
Carpark dataset.

5 15 25 35 45 50
HKM [13] 19.8 1284|359 | 36.7 | 38.9 | 459

PSC[29] 21.9 [ 23.6 | 37.1 | 38.6 | 47.4 | 68.3
GMMs [5] - - - - - 1386
Our approach | 38.7 | 584 | 65.5 | 67.3 | 70.1 | 72.3

cluster 19

all clus‘lers” . lsler 1 ] cluster 4 ] cluster 9
Fig.3. Examples of classified testing trajectories in the
CAVIAR dataset. The results of: (a) HKM, (b) PSC, (c)
GMMs, (d) our proposed approach. (Better View in Color)

Different from the experimental settings in CAVIAR,
we use the LCSCA-based trajectory feature representation
with eleven control points in Carpark. ¢ and g are set to 1

in the experiment. We also evaluate the classification ability
of our approach compared with three methods, where a test
trajectory is classified by the most similar cluster. We use 5,
10, and 15 training samples per category, respectively. The
experimental results are summarized in Table 2. It is shown
that our approach consistently outperforms other competitive
methods. Moreover, we show some samples of classified
categories in Fig.4. The trajectories are well classified to
cluster 1, while the cluster 3, cluster 6 and cluster 7 have some
misclassified trajectories, for the purple (cluster 3), green
(cluster 6) and red (cluster 7) trajectories pass by the
crossroad. All methods are difficult to identify the purple
trajectories from east to west-south and from west to west-
south and from west to west-south, because both of them have
long segments with similar positions and shapes.
Nevertheless, the results show that the proposed approach
outperforms the other methods in cluster 3, cluster 6 and
cluster 7.

“all clusters cluster 1 : cluster 3 cluster 6 cluster 7
Fig.4. Examples of classified testing trajectories in the
Carpark dataset. The results of: (a) HKM, (b) PSC, (¢) GMMs,
(d) our proposed approach. (Better View in Color)

5. CONCLUSION

We have proposed the approach of Cluster-based Dictionary
Learning (CDL) and Locality-constrained  Sparse
Reconstruction (LSR) to classify the trajectories in
surveillance videos. By introducing label consistency
constraint and label updating strategy in the dictionary, the
incremental CDL approach can learn the dictionary that
explores the importance of the label consistency constraint
and classification optimization. On the learned dictionary, we
obtain a multiple-category classifier based on LSR that
explores both sparsity and local adaptability for robust
trajectory classification. Experimental results on two public
datasets show the good performance of our approach.

Future work includes exploring better optimization
algorithms to train the automatic parameter setting.
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