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ABSTRACT

Subtle emotions are expressed through tiny and brief
movements of facial muscles, called micro-expressions; thus,
recognition of these hidden expressions is as challenging as
inspection of microscopic worlds without microscopes. In
this paper, we show that through motion magnification, sub-
tle expressions can be realistically exaggerated and become
more easily recognisable. We magnify motions of facial ex-
pressions in the Eulerian perspective by manipulating their
amplitudes or phases. To evaluate effects of exaggerating
facial expressions, we use a common framework (LBP-TOP
features and SVM classifiers) to perform 5-class subtle emo-
tion recognition on the CASME II corpus, a spontaneous
subtle emotion database. According to experimental results,
significant improvements in recognition rates of magnified
micro-expressions over normal ones are confirmed and mea-
sured. Furthermore, we estimate upper bounds of effective
magnification factors and empirically corroborate these theo-
retical calculations with experimental data.

Index Terms— Subtle emotion, Motion magnification,
Micro-expression recognition, Classification

1. INTRODUCTION

Human beings learn to recognize others’ emotions through
facial expressions i.e. motions of facial muscles. Recognition
of an emotion state would very much depend on magnitudes
of such motions. While a normal emotion with significant ex-
pressions is easily recognized, subtle emotions i.e. involun-
tary, sudden and brief (1/25s to 1/3s duration) and small ex-
pressions are much more difficult to recognize for both human
beings and machines. This difficulty was quantified by Frank
et al.’s psychological experiments [1] in which untrained and
trained human subjects recognise five subtle expressions with
accuracy rates of 32% and 47% respectively. Meanwhile,
studies of Russell et al. [2] show that normal expression
recognition can be recognized by human subjects from dif-
ferent races with 75% accuracy in the same five-class task.

In the first FERA Challenge [3], Yang et al. reported an
accuracy rate 84% of their artificial system for recognising
five normal spontaneous expressions. In contrast, for the case
of subtle emotions, Le Ngo et al. [4] and [5] reported a recog-

nition rate of 44% with leave-one-subject-out (LOSO) vali-
dation protocol and 65% with leave-one-video-out (LOVO)
validation on the CASME II corpus [5] of subtle spontaneous
expressions. As the LOSO protocol is broadly employed in
other facial expression recognition studies [6], Le Ngo et al.’s
recognition rate 44% is used for consistent comparison with
previous studies. The difference of recognition rates indicates
that large facial motions of normal expressions are likely to
play a significant role in their superiority of recognition rate
over subtle emotions with small magnitudes of expressions.
Intuitively, the more facial motions an expression has, the
more recognizable it is.

Therefore, it seems plausible that motion magnification
could boost the recognition rate of subtle emotions. This
research question is the focus of the current paper, wherein
we show that motion magnification of micro-expressions im-
proves recognizability of subtle emotions.

To the best of our knowledge, the only other previous
work applying magnification to emotion recognition is by
Park et al. [7], where they reported increment of recognition
rate when motion vectors at facial key-points are magnified
according to predefined motion magnification factors; then,
corresponding points at later frames are shifted accordingly.
Nevertheless, since such a magnified expression considered
in the Park et al. approach, as shown in Fig. 6 of [7], is
synthesized from an original expression by piece-wise trans-
formation, the result would visually appear to be unnatural.
The distorted expression is due to local shifts at particular
facial points with ad-hoc magnification factors as well as
inaccurate estimation of complicated motions. Moreover,
experiment results reported in [7] are unreliable since Park et
al. [7] classify these unnaturally magnified emotions from an
undisclosed facial expression databases [8] without psycho-
logical ground truth and evaluate with k-fold cross-validation,
which is a subject-dependent evaluation technique. Also, in
very recent independent works, both Li et al. [9] and Park
et al. [10] proposed to apply the amplitude-based Eulerian
motion magnification technique of [11] for micro-expression
recognition. In contrast, our work here is based on more
advanced Eulerian motion magnification [12].

In more detail, we propose the first known realistic magni-
fication of subtle facial expressions and provide correspond-
ing analysis of the effects on recognition rates of micro-
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expressions. In the Eulerian perspective, complex motions
of subtle expressions can be effectively magnified as prop-
erties of motion e.g. velocity and acceleration are assumed
to evolve over time at any image pixel not just facial key-
points. In addition, this realistic magnification also improves
the recognition rate of subtle emotions in the CASME II [5]
database as compared to state-of-the-art methods equipped
with complex features [13][14]. Finally, we propose a simple
method of estimating the maximum effective magnification
factors and show that these match empirically evaluated data.

2. EULERIAN MOTION MAGNIFICATION

Being able to observe small details is a challenge, not just for
the naked eye but also in terms of extracting appropriate fea-
tures for pattern recognition tasks. Small motions can in fact
undergo computational magnification [15] [11] to be better
recognisable. In Lagrangian approaches to motion magnifica-
tion, motion vectors need to be estimated at a given time and
location explicitly, then frames of videos are warped accord-
ing to magnified vectors. However, accurate estimation of
motion is still computationally intensive and error-prone es-
pecially in complex and subtle motions i.e. unnatural magni-
fied subtle emotions in [7]. Meanwhile, Eulerian-inspired ap-
proaches [11] [16] [12] do not require explicit motion vectors
but simulate motion magnification by magnifying changes of
properties i.e. amplitude or phase on the whole image grid.
As motion in Eulerian perspective depends on types of sig-
nal properties like amplitude or phase, there are amplitude-
based (A-EMM) and phase-based (P-EMM) Eulerian Motion
Magdnification (EMM).

2.1. Amplitude-based Eulerian Motion Magnification

Let I(x, t) denote an image profile at location x and time
t. Having undergone a translational motion with a displace-
ment function δ(t), the image profile is rewritten as I(x, t) =
f(x+ δ(t)) and I(x, 0) = f(x). The motion in Eulerian per-
spective is characterised by differences of intensity B(x, t)
given that I(x, t) = I(x) + B(x, t); then, a pixel intensity Î
of a magnified motion is computed as

Î(x, t) = I(x) + α ∗B(x, t) (1)

where α is a magnification factor. Assume that only small
translational δ(t) motion occurs, Î(x, t) can be approximated
[11] by the first-order Taylor series as follows.

Î(x, t) ≈ f(x) +
∑
k

αB(x, t) (2)

where k denotes a passband of a temporal filter with a cor-
responding attenuation factor γk and B(x, t) is output of the
temporal bandpass filter:

B(x, t) =
∑

γkδ(t)
δf(x)

δx
(3)

(a) α = 0 (b) α = 3 (c) α = 7

Fig. 1: Amplitude-based Eulerian Motion Magnification

(a) α = 0 (b) α = 3 (c) α = 7

Fig. 2: Phased-based Eulerian Motion Magnification

2.2. Phase-based Eulerian Motion Magnification

In the spectral domain, the shifted image profile I(x, t) =
f(x + δ(t)) can be re-written through Fourier series decom-
position as follows:

f(x+ δ(t)) =

+∞∑
ω=−∞

Aωe
iω(x+δ(t)) =

+∞∑
ω=−∞

IωAωe
iωδ(t)

where I(x, 0) =
∑+∞
ω=−∞ Iω represents an image profile at

t = 0 with Iω as its Fourier coefficients. In this spectral do-
main, the EMM is realised by magnifying band-passed phase
shift B = ωδ(t) with magnification factor α. Therefore, the
approximated magnified image Î(x, t) is written [16] as:

Î(x, t) =

+∞∑
ω=−∞

Îω ≈
+∞∑

ω=−∞
Iωe

iαB (4)

where Îω are Fourier coefficients of motion magnified images.

3. MAGNIFIED SUBTLE EMOTION RECOGNITION

The main thesis of this paper is that the challenge of rec-
ognizing subtle emotions can be partly eased if this subtle
and short-lived motion is properly magnified. To substanti-
ate this, we show the first known analysis of how Eulerian
Motion Magnification (EMM) improves recognition of subtle
expressions on a publicly available corpus. For such sub-
tle motions, Eulerian magnification induces less noise than
the Lagrangian approach as suggested by Rubinstein et al.
[17]. Fig.1b,1c and 2b,2c illustrate exaggerated expressions
at magnification factors (α) 3,7 when A-EMM and P-EMM
magnify original subtle expressions in Fig. 1a and 2a. As
normal facial expressions are analysed in a general concep-
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tual framework [6]: facial registration, feature extraction, and
classification, similar steps are utilised here for classifying
EMM-magnified subtle expressions. All facial samples of
the CASME II database are registered by Active Appearance
Model (AAM); then, identity of human subjects is partly
suppressed by warping their faces according to a common
template by Local Weighted Mean (LWM) transformation
[18]. After that, A-EMM or P-EMM magnifies nearly invis-
ible motion of subtle facial expressions with magnification
factors α before Local Binary Pattern with Three Orthogonal
Plane (LBP-TOP) [19] extracts feature vectors from these
artificially exaggerated emotion. After the motion magnifi-
cation and feature extraction processes are done for all video
samples, the generated LBP-TOP feature vectors are fed into
the Support Vector Machine (SVM) with Linear (LIN) kernel
for training and evaluating the multi-class classifier of subtle
emotions. As the number of video samples for training is
much smaller than the dimensionality of LBP-TOP features
[19] i.e. histograms of spatio-temporal local blocks, LIN
kernel of data is sufficient for forming optimal hyperplanes.

Subject identities will significantly impact the evaluation
results if the same subjects appear in both training and testing
corpus. Therefore, the classifier is trained with the Leave-
One-Subject-Out (LOSO) validation approach. In this ap-
proach, training samples are taken from all 25 subjects in the
CASME II corpus except one test subject, and the test subject
is sequentially selected from all 26 subjects. As a result, a
classifier is trained and tested 26 times and its performance
is averaged from these 26 evaluation results. To evaluate the
trained classifiers, we employ F1 scores, precision and recall
rates as numerical results instead of accuracy or recognition
rate as suggested by Le Ngo et al. [4]. These evaluation mea-
surements are less prone to bias, caused by skewed sample
distributions over emotional classes. Note that all above ab-
breviations appear in figures, presented in the Section 4.

In order to well-approximate magnified signals, we
propose to bound the magnification factors of A-EMM
(αA−EMM ) and P-EMM (αP−EMM ) by (1 + αA−EMM ) ∗
δ(t) < λc

8 [11] and αP−EMMδ(t) <
λc

4 [16] with respect
to spatial cut-off wavelength λc and motion duration δt. The
reasoning is as follows: Wu et al. [11] mentions dependence
of spatial cut-off wavelength on particular applications. As
Mermillod et al. [20] show spatial frequencies lower than 32
cycles per image (CPI)) contain the best features for recogni-
tion of facial expressions, the cut-off spatial wavelength for
micro-expression is λc = D

32 where D is a diagonal length of
a sample image. In our experiment, an input frame is resized
to 320×240 pixels henceD =

√
3202 + 2402 = 400 and the

corresponding cut-off spatial wavelength is 12.5 pixels per
cycle (PPC). Furthermore, durations of micro-expressions
last from 1

25 of a second to 1
15 of a second, which means

1
25 < δ(t) < 1

15 . Given λc = 12.5 and δ(t) ∈ [ 1
25 ,

1
15 ], we

can compute boundaries of A-EMM and P-EMM magnifica-
tion factors, αA−EMM < 23 and αP−EMM < 47. In the

following experiments, magnification factors are varied for
completeness, between 0 and 90 with a step of 3. The range
of factors with maximal recognition rates will be shown to
corroborate the above estimations.

4. EXPERIMENTS & RESULTS

In LBP-TOP feature extraction, images are spatially resized
to 320 × 240 pixels resolution and partitioned into non-
overlapping 5 × 5 blocks, then corresponding blocks of
all frames are stacked up in 3-D volumes. Spatial-temporal
features, histograms of binary patterns appearing in these vol-
umes, are extracted from the volumes by LBP-TOP4,4,4,1,1,4.
The first three numbers (4,4,4) represent 4-neighbor connec-
tions in three orthogonal planes and the last three numbers
are radii of these respective connection. The SVM classifier
with LIN kernel uses very large penalty factors (c = 10000)
for regularizing the learning process as differences in facial
micro-expressions are often superseded by subject identities.

4.1. Experimental Database

Experiments are done with the CASME II corpus [5], the
most comprehensive database of spontaneous subtle emotions
so far. It contains a reasonably large number (247) of video
samples, elicited from 26 Asian participants with an aver-
age age of 22.03 years old. Subjects are instructed to hide
their true emotion while being shown emotionally stimulat-
ing short movies. At the same time, their facial responses are
recorded in videos which are later post-processed and labeled
by specialists trained to recognize subtle emotions. These ex-
perts separate the recording into video samples with respect
to single and complete subtle expressions. Then, they as-
sign each sample into one of five emotional categories: Tense
(T), Disgust (D), Happiness (H), Surprise (S) or Repression
(R). It is noted that specialists are aided with high frame-rate
(200 fps) video recording in 290× 340 resolution by a Point
Grey GRAS-03K2C camera as subjects’s responses are elu-
sive and short-lived. To avoid flickering light and to ensure
stable illuminating condition during the recording, four LED
lamps under umbrella reflectors are directed toward the hu-
man subjects. Overall, CASME II is a high-quality database
of spontaneous subtle expressions created with a reliable la-
beling process on a reasonably large number of subjects.

4.2. Experimental Result

Figure 3 shows F1-scores of subtle emotion recognition for
both A-EMM and P-EMM over a range of magnification fac-
tors α = [0, 90]. Their performances increase in accordance
to the increment of α; however, the recognition performance
does not improve but declines after the maximum effective
magnification factor. As noises are also magnified alongside
motions, artificially introduced noise diminishes the benefits
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Fig. 3: F1-score of 5-class recognition of A-EMM and P-EMM mag-
nified micro-expressions w.r.t various magnification factors α from
0 to 90

of the magnified motion. Therefore, the recognition perfor-
mances appear to reach their peaks at the maximum effective
magnification factors.

In Sub-section 3, we have theoretically estimated these
magnification factors with knowledge about the useful cut-
off wavelength of facial features and the duration of a sub-
tle expression. Data in Figure 3 about performances of A-
EMM and P-EMM allow to empirically test these estima-
tions. More precisely, the maximum effective magnification
factor for A-EMM is estimated to be 23. Figure 3 shows that
peak performances of A-EMM happen between α = 18 and
α = 24, which corroborates with the estimated 23. Mean-
while, P-EMM was estimated to reach its peak performance
around α = 47, and correspondingly, the figure shows two
local peaks α = 48 and α = 69 on the red plot of P-EMM.
The estimation of maximum effective magnification factor is
more accurate for A-EMM than for P-EMM. Moreover, the
F1-scores of A-EMM are almost always better than those of
P-EMM for all magnification factors (see Figure 3). It might
be due to that P-EMM is more susceptible to noise than A-
EMM is. Further studies on signal-to-noise ratio of magni-
fied videos are required but not considered in this paper due
to page limitation.

Table 1 shows performances of previously proposed
methods [4][13][14] for automatic recognition of subtle emo-
tions in CASME II corpus with the LOSO validation protocol.
At the first line is performance of a baseline method, which
includes LBP-TOP features and SVM classifier [5]. Instead
of SVM, Le Ngo et al. [4] employ AdaBoost for recognition
task of which performance is mentioned at the second line of
the table. At the third line is the performance of Liong et al.
[13]’s method of where local LBP-TOP features are weighted
w.r.t the total amount of optical strain magnitudes in a re-
gion. While both baseline and Liong et al.’s method only

use LBP-TOP of image intensities, Oh et al. [14] utilize ad-
ditional phase and orientation channels from Riesz-Wavelet
transform for LBP-TOP feature extraction. Liong et al.’s
weighting strategy provides modest improvement, i.e. 3%
in F1 score, over the baseline method with additional com-
putational cost of optical strain estimation. Meanwhile, the
approach of encoding additional data channels [14] proves to
be more successful with 8% improvement in F1 score against
the baseline method. However, it is also computationally
heavy as the dimensions of input data are tripled. Different
from the mentioned approaches on enhancing feature extrac-
tions, we choose to magnify facial motions so they become
more distinguished in both visual and feature domains. Per-
formance of P-EMM at the magnification factor 69, P-EMM
(α = 69) is better than Oh et al’s method marginally by 1%
in F1-score, but with less computational complexity. Further-
more, A-EMM provides even better performance i.e. 0.47
in F1-score which outperforms all previously mentioned ap-
proaches as shown in Table 1. It is noted that both A-EMM
and P-EMM only encode LBP-TOP features with a gray-
scale intensity channel while Oh et at. method encode more
channels, i.e. amplitude, phase and orientation, into LBP-
TOP features. These results show that motion magnification
techniques can significantly reduce errors in recognizing sub-
tle emotions without complex and high-dimensional features
for suitable choices of magnification factors.

Table 1: Accuracy (ACC), F1-score (F1), precision (Pre) and recall
(Rec) results

Method ACC F1 Rec Pre

Baseline 0.38 0.35 0.34 0.36
Le Ngo et al. [4] 0.44 0.33 0.53 0.29
Liong et al. [13] 0.42 0.38 0.36 0.41
Oh et al. [14] 0.46 0.43 0.35 0.55
P-EMM (α = 69) 0.50 0.44 0.44 0.45
A-EMM (α = 24) 0.51 0.47 0.44 0.49

5. CONCLUSION

Eulerian Motion Magnification allows to exaggerate subtle
emotions visually and boost recognition rate of 5-class subtle
expression problem by 0.12 in F1-score. The highest recog-
nition rate is 0.47, which is equivalent to the recognition rate
(47%) of trained experts and outperforms current state-of-the
art methods. Among the two variations of EMM, A-EMM
outperforms P-EMM in the context of recognition rates when
facial sequences are exaggerated with increasing magnifica-
tion factors α = [0 . . . 90].
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