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ABSTRACT

We propose a ghost-free high dynamic range (HDR) image synthesis
algorithm using a rank minimization framework. Based on the linear
dependency among irradiance maps from low dynamic range (LDR)
images, we formulate ghost-free HDR imaging as a low-rank matrix
completion problem. The main contribution is to solve it efficiently
via the augmented Lagrange multiplier (ALM) method, where the
optimization variables are updated by closed-form solutions. Exper-
iments on real image sets show that the proposed algorithm provides
comparable or even better image qualities than state-of-the-art ap-
proaches, while demanding lower computational resources.

Index Terms— High dynamic range imaging, low-rank matrix
completion, truncated nuclear norm minimization.

1. INTRODUCTION

The recent advancement of imaging technology has enabled a variety
of devices to acquire high-resolution images. However, an ordinary
digital camera still can only capture a limited dynamic range, which
is significantly lower than that of a natural scene [1]. Therefore,
a captured image typically contains under- or over-exposed regions
due to a limited dynamic range. A lot of researches have been car-
ried out to overcome this limitation and capture images of full dy-
namic ranges of the real scenes, which are called high dynamic range
(HDR) images. One of the most popular HDR image acquisition ap-
proaches is to merge a set of conventional low dynamic range (LDR)
images taken with different exposure times [2,3]. However, since the
scene is often dynamic and has moving objects that introduce ghost-
ing artifacts, a simple composition may fail to provide a high-quality
HDR image. Therefore, ghost-free HDR imaging, which attempts to
remove ghosting artifacts in the synthesized HDR image, has been
an important research topic [4–10].

One approach to ghost-free HDR imaging is to register LDR
images before HDR image synthesis, assuming the global camera
motion. For example, Kang et al. [11] computed optical flow among
the LDR images. To improve the accuracy of optical flow estimation,
Zimmer et al. [12] employed a gradient domain correspondence es-
timation. However, optical flow-based correspondence estimation
in [11, 12] may cause unreliable motion vectors due to information
loss in poorly-exposed regions. Recently, Hu et al. [7] employed the
PatchMatch algorithm due to its superior correspondence estimation
performance. While this algorithm provides high-quality HDR im-
ages, the main disadvantage is its high computational complexity.

In addition to the global motion, moving objects cause ghost-
ing artifacts as well; thus, attempts have also been made to alleviate

the contributions of regions on moving objects detected by ghost re-
gion detection. For example, based on the assumption that the back-
ground irradiance with respect to exposure times are linear, Gallo
et al. [4] used the deviation from linearity to measure ghost effects.
Heo et al. [5] detected ghost regions employing the joint probability
density between different exposure images and then further refined
these regions using energy minimization. Recently, Lee et al. [9] em-
ployed a low-rank matrix completion framework, assuming a static
background and sparsity of moving objects, but they used a less ac-
curate approximation to the matrix rank.

In this work, we propose a ghost-free HDR image synthesis al-
gorithm using a rank minimization framework. Specifically, assum-
ing the linearity of irradiances among LDR images, we formulate
background estimation as a rank minimization problem and then
solve it efficiently using the augmented Lagrange multiplier (ALM)
method, where the optimization variables are updated by closed-
form solutions. Experimental results show that the proposed al-
gorithm provides comparable or even higher image qualities than
state-of-the-art approaches [5, 7, 9, 10], while providing substantial
improvement in speed.

The rest of this paper is organized as follows. Section 2 briefly
reviews related work. Section 3 describes the proposed HDR im-
age synthesis algorithm. Section 4 provides experimental results.
Finally, Section 5 concludes the paper.

2. RELATED WORK

Several ghost-free HDR imaging algorithms have been developed
based on the assumption that pixels in the ghost regions show a vari-
ation over exposures and use the deviation from linearity to mea-
sure ghost effects [4–6]. Recently, to better exploit the linearity of
irradiances, a rank minimization framework has been employed in
ghost-free HDR imaging [8–10]. In [8], Oh et al. attempted to align
input images and detect moving objects simultaneously using a rank
minimization approach to compensate for both camera motion and
object motion. Then, in [10], they extended their work employing
the low-rank matrix completion [13]. Lee et al. [9] developed a low-
rank matrix completion-based HDR imaging with multiple physical
constraints on the properties of ghost regions. However, while recent
researches on rank minimization-based ghost-free HDR imaging ap-
proaches provide high-quality results, such sophisticated algorithms
require significant computational resources.

Relation to Prior Work. Motivated by the recent advancement
on rank minimization framework [14–16], we focus on the applica-
tion of the truncated nuclear norm minimization to HDR imaging,
which is known to be a better approximation to the rank function.
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The main difference between the proposed algorithm and a previous
approach in [10] is that we develop a computationally more efficient
algorithm by closed-form solutions in the optimization procedure,
which was solved iteratively in [10].

3. PROPOSED ALGORITHM

3.1. Problem Formulation

We are given a set of images taken with different exposure times
{vec(Z1), vec(Z2), . . . , vec(Zn)}, where vec(Zi) ∈ Rm×1 de-
notes a vector of pixel values, and m and n are the number of pixels
in an image and the number of input images, respectively. Then,
using the camera response function [2], we construct the observed
irradiance matrix D = {vec(I1), vec(I2), . . . , vec(In)}, where
vec(Ii) is the irradiance vector for the ith image.

The scene irradiance can be decomposed into the underlying
background and moving objects. Specifically, the irradiance matrix
D can be represented as a sum of two matrices X and E, which
correspond to the underlying background scene and moving objects,
respectively. Since matrix X represents a static scene, it has low
rank, and E is a sparse matrix, i.e., most elements in E are zero.
In addition, we assume that only a limited number of observations
can be made in HDR imaging in general due to under- and over-
exposed regions in input images. However, note that we can also
select preferable objects or regions that will appear in the synthe-
sized HDR image by masking images as done in [10]. Then, irra-
diance estimation for ghost-free HDR imaging can be formulated as
the following rank minimization problem

minimize
X,E

rank(X) + λ‖E‖0
subject to PΩ(X + E) = PΩ(D),

(1)

where X ∈ Rm×n, and PΩ denotes a sampling operator in the ob-
served region Ω, i.e.,

[PΩ(A)]ij =

{
Aij , if (i, j) ∈ Ω,

0, otherwise.
(2)

Because it is intractable in practice to solve the optimization
problem in (1) directly, previous approaches use an approximate
method via convex relaxation [13, 17]. For example, rank(A) is ap-
proximated by the nuclear norm ‖A‖∗ =

∑min(m,n)
k=1 σk(A) [13]

or the truncated nuclear norm [14] (also known as the partial sum
of singular values [15]) ‖A‖r =

∑min(m,n)
k=r+1 σk(A), where σk de-

notes the kth largest singular value of A. Also, the `0-norm ‖E‖0
is approximated by the `1-norm ‖E‖1. In this work, we employ the
truncated nuclear norm as an approximation for the rank function in
(1), since it can exploit a priori target rank information about the
problem in rank minimization. More specifically, given the target
rank r, the optimization in (1) can be rewritten as

minimize
X,E

‖X‖r + λ‖E‖1
subject to PΩ(X + E) = PΩ(D),

(3)

where λ controls the relative importance between the rank of X and
the sparsity of E. Based on the assumption that the underlying scene
is static, we set the target rank to r = 1 in this work.

3.2. Optimization

We propose a computationally efficient algorithm to solve the opti-
mization problem in (3) employing the ALM method [18,19], which
is known to be an efficient solver to the nuclear norm minimization
due to its fast convergence and scalability. In [10], Oh et al. also
solved the optimization in (3) using the ALM method. However,
because of the sampling operator PΩ, they could not update the op-
timization variable in a closed-form matter, thus solved it iteratively
instead, which requires higher computational resources. The main
novelty of the proposed algorithm over [10] is that we update the op-
timization variables by closed-form solutions, so that it is more effi-
cient than the conventional algorithm [10]. Then, the main challenge
is how to reformulate (3) to an ALM-oriented form, so that closed-
form solutions can be obtained in the optimization procedure. To this
end, we introduce slack variables as done in [16]. More specifically,
we rewrite the optimization in (3) as

minimize
X,E,S

‖X‖r + λ‖E‖1
subject to X + E + S = PΩ(D),

‖PΩ(S)‖F ≤ δ,
(4)

where S denotes a matrix of slack variables, and δ is the noise level.
The ALM method solves a series of unconstrained subproblems

instead of the original constrained optimization problem. Here, we
show how we adopt the ALM method to efficiently solve the opti-
mization problem in (4). Specifically, for our problem in (4), we first
define the augmented Lagrangian function L(X,E,S,Λ, µ) as

L(X,E,S,Λ, µ) = ‖X‖r + λ‖E‖1

+ 〈Λ,PΩ(D)−X−E− S〉+
µ

2
‖PΩ(D)−X−E− S‖2F ,

(5)

where µ > 0 is a parameter to penalize the equality constraint,
Λ ∈ Rm×n is the Lagrange multiplier matrix, and 〈·, ·〉 denotes the
matrix inner product. A solution to the original optimization prob-
lem in (4) can be obtained by minimizing its augmented Lagrangian
L(X,E,S,Λ, µ) for an estimate of Λ and a sufficiently large value
of µ [20]. The ALM algorithm iteratively estimates both the opti-
mal solution and the Lagrange multiplier until convergence. More
specifically, we employ an alternating direction method [19], which
separates an optimization over each variable and solves it succes-
sively. These sub-problems are described below.

Updating X. In the first step, given estimates of Ek, Sk, and
Λk, we update X as

Xk+1 = arg min
X

L(X,Ek,Sk,Λk, µk)

= arg min
X

‖X‖r + 〈Λk,PΩ(D)−X−Ek − Sk〉

+
µk
2
‖PΩ(D)−X−Ek − Sk‖2F

= arg min
X

‖X‖r +
µk
2
‖X− PΩ(D) + Ek + Sk − µ−1

k Λk‖2F .

(6)

We can obtain the closed-form solution to (6) by applying the partial
singular value thresholding (PSVT) operator [15]. Specifically, let us
consider the singular value decomposition (SVD) of a matrix A =
UΣVT , where Σ = diag(σ1, . . . , σmin(m,n)). Then, the PSVT
operator is defined by Pr,τ (A) = U(Σ1 + Sτ (Σ2))VT , where
Σ1 = diag(σ1, . . . , σr, 0, . . . , 0) and Σ2 = diag(0, . . . , 0, σr+1,
. . . , σmin(m,n)), respectively, and Sτ (A) denotes the element-wise
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soft-thresholding operator for τ > 0, i.e., [Sτ (A)]ij = sgn(Aij) ·
max{|Aij | − τ, 0}. The PSVT operator provides the closed-form
solution to (6) [15], given by

Xk+1 = P
r,µ−1

k

(
PΩ(D)−Ek − Sk + µ−1

k Λk

)
. (7)

Updating E. Next, we estimate E, given Xk+1, Sk, and Λk.
Specifically, we solve the following optimization problem:

Ek+1 = arg min
E

L(Xk+1,E,Sk,Λk, µk)

= arg min
E

λ‖E‖1 + 〈Λk,PΩ(D)−Xk+1 −E− Sk〉

+
µk
2
‖PΩ(D)−Xk+1 −E− Sk‖2F

= arg min
E

λ‖E‖1

+
µk
2
‖E− PΩ(D)−Xk+1 − Sk + µ−1

k Λk‖2F . (8)

The closed-form solution to (8) can be obtained by the soft-
thretholding operator [21], given by

Ek+1 = S λ
µk

(
PΩ(D)−Xk+1 − Sk + µ−1

k Λk

)
. (9)

Updating S. Also, we estimate S with fixed Xk+1, Ek+1, and
Λk, solving the following optimization problem.

Sk+1 = arg min
‖PΩ(S)‖F≤δ

L(Xk+1,Ek+1,S,Λk, µk)

= arg min
‖PΩ(S)‖F≤δ

〈Λk,PΩ(D)−Xk+1 −Ek+1 − S〉

+
µk
2
‖PΩ(D)−Xk+1 −Ek+1 − S‖2F

= arg min
‖PΩ(S)‖F≤δ

‖S− PΩ(D) + Xk+1 + Ek+1 − µ−1
k Λk‖2F .

(10)

In [16], we have shown that the optimization problem in (10) can
be solved via a closed-form solution. Specifically, let Yk+1 =
PΩ(D) − Xk+1 − Ek+1 + µ−1

k Λk for simpler notations. Then,
the closed-form solution to (10) is given by

Sk+1 = PΩc(Yk+1) + min

{
δ

‖PΩ(Yk+1)‖F
, 1

}
PΩ(Yk+1).

(11)
Updating Λ. Finally, given Xk+1, Ek+1, and Sk+1, the La-

grange multiplier Λ is updated as

Λk+1 = Λk + µk(PΩ(D)−Xk+1 −Ek+1 − Sk+1). (12)

In the optimization procedure, variables X, E, S, and Λ are it-
eratively updated via (7), (9), (11), and (12), respectively, until con-
vergence. Note that all those optimization variables are updated by
closed-form solutions, so that the proposed algorithm is computa-
tionally more efficient than conventional rank minimization-based
approaches [9, 10]

3.3. HDR Image Composition

We synthesize an HDR image by simply averaging the background
irradiance maps in the low-rank matrix X. Specifically, we compose
an HDR image by

Ri =
1

n

n∑
j=1

Xij , (13)

where Ri is the estimated radiance at pixel location i.

Table 1: The computation times of Heo et al.’s algorithm [5], Hu et
al.’s algorithm, Lee et al.’s algorithm [9], Oh et al.’s algorithm [10],
and the proposed algorithm for the “SculptureGarden” images.

Heo et al. Hu et al. Lee et al. Oh et al. Proposed
Times (s) 390 392 91 149 52

4. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed HDR image synthesis
algorithm on two image data sets. The parameters δ and λ in (4) and
(5) are set to 0 and 1

/√
max(m,n), respectively. We define the

observed region as a set of properly-exposed pixel locations, given
by

Ω = {(i, j)|Zth ≤ Zij ≤ 255− Zth}, (14)

where the threshold value is fixed to Zth = 2 in this work. Note,
however, that the observed region Ω can be chosen manually by a
user as noted in [10]. We use the MATLAB function tonemap
to display the results of the proposed algorithm, Hu et al.’s algo-
rithm [7], Lee et al.’s algorithm [9], and Oh et al.’s algorithm [10],
while Heo et al.’s algorithm [5] uses their own tone mapping tech-
nique. The results of the conventional algorithms are obtained by
executing the codes provided by the respective authors.

Fig. 1 compares the synthesized results and their detailed parts
on the “SculptureGarden” images. In Figs. 1(a)–(c), Heo et al.’s,
Hu et al.’s, and Lee et al.’s algorithms provide HDR images with
moving objects from one of the input images, whereas Oh et al.’s
algorithm and the proposed algorithm yield the background scene
in Figs. 1(d) and (e), respectively. This is because we define Ω as
a set of properly-exposed pixels only, but note that we can also pro-
duce output HDR images that contain objects in an input image [10].
In Fig. 1(a), Heo et al.’s algorithm provides results with severe arti-
facts, e.g., smeared textures on the ground and color distortions on
the stairs, due to its incorrect ghost region detection. Hu et al.’s al-
gorithm in Fig. 1(b) provides images without ghosting artifacts but
yields blurring artifacts near boundaries of walking people, where
correspondence matching fails due to poor exposure in the reference
image. While Lee et al.’s algorithm in Fig. 1(c) preserves image
details and removes ghosting artifacts effectively, it still provides
color artifacts in highly saturated regions. Oh et al.’s algorithm and
the proposed algorithm in Figs. 1(d) and (e), respectively, produces
comparable results, but we see that the proposed algorithm removes
ghosting artifacts more effectively.

Fig. 2 shows the synthesized HDR images and their magnified
parts on the “Arch” images, obtained by each algorithm. Although
all algorithms effectively remove ghosting artifacts, Hu et al.’s algo-
rithm in Fig. 2(b) provides blurring artifacts in the ceiling because of
failure of the correspondence estimation at poorly-exposed regions.
We see that Heo et al.’s, Lee et al.’s, Oh et al.’s algorithms, and the
proposed algorithm yield comparable results.

Table 1 compares the actual execution times for the “Sculpture-
Garden” set with five images of resolution 1024 × 754. We use a
PC with a 2.6 GHz CPU and 8 GB RAM. We see that the proposed
algorithm is the most efficient in terms of execution time, especially
compared with Oh et al.’s algorithm, which is also based on the low-
rank matrix completion framework. This is because the proposed al-
gorithm updates the optimization variables by closed-form solutions,
whereas Oh et al.’s algorithm performs it iteratively. These results
indicate that the proposed algorithm provides comparable or even
better performance than conventional algorithms, while demanding
lower computational resources.
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(a) (b) (c) (d) (e)

Fig. 1: Synthesized results of the “SculptureGarden” image set by (a) Heo et al.’s algorithm [5], (b) Hu et al.’s algorithm [7], (c) Lee et al.’s
algorithm [9], (d) Oh et al.’s algorithm [10], and (e) the proposed algorithm.

(a) (b) (c) (d) (e)

Fig. 2: Synthesized results of the “Arch” image set by (a) Heo et al.’s algorithm [5], (b) Hu et al.’s algorithm [7], (c) Lee et al.’s algorithm [9],
(d) Oh et al.’s algorithm [10], and (e) the proposed algorithm.

5. CONCLUSIONS

We developed a ghost-free HDR image synthesis algorithm via trun-
cated nuclear norm minimization for low-rank matrix completion in
this work. Based on the assumption that the underlying background
is static, we first represented the background and moving objects as a
low-rank matrix and a sparse matrix, respectively. Then, we formu-
lated the background estimation as the low-rank matrix completion
problem and solved it efficiently using the ALM method. Exper-
imental results demonstrated that the proposed algorithm provides

image quality improvements, while requiring lower computational
resources.
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