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ABSTRACT

A novel adaptation of the two dimensional Homomorphic filter is
introduced using the Dual Tree Complex Wavelet Transform for im-
proved illumination invariant processing. The Homomorphic filter
is conventionally implemented within the log-Fourier domain using
an isotropic high-pass filter based on the assumption that the illumi-
nation signal occupies low spatial frequencies. In this case however,
low frequency structural reflectance content will be incorrectly at-
tenuated. Our method implements the Homomorphic filter using the
DT-CWT and exploits the property of cross scale persistence (for
structural content) to generate a filter that retains cross scale content
and therefore reduces incorrect attenuation of structural reflectance
content.

Index Terms— Wavelet, Homomorphic, Illumination

1. INTRODUCTION

Two dimensional Homomorphic filtering is a standard image en-
hancement technique that normalizes and stretches the contrast
within an image while simultaneously attenuating image content
attributable to surface illumination [1]. It is used in many imaging
applications such as medical image enhancement [2–4], illumination
invariant pre-processing for face recognition [5–8] and general im-
age illumination normalisation [1]. Conventionally, Homomorphic
filtering is implemented using an isotropic high pass filter (such
as the Butterworth filter) within the Fourier domain [1]. However,
recent work has used wavelet transforms [2, 3, 5–7].

Homomorphic filtering makes the following assumptions:

1. Illumination and reflectance are multiplicative.

2. High and low spatial frequency content is assumed to repre-
sent mostly reflectance and illumination respectively.

The Homomorphic filter initially takes the logarithm of image in-
tensity making the illumination and reflectance components additive
and therefore linearly separable in the frequency domain. A high
pass filter is then used on the log intensity of the image. This fil-
ter suppresses low frequencies (and therefore illumination content)
while amplifying high frequencies (and therefore reflectance con-
tent) within the log-intensity domain.

Frequency domain filtering can only affect global frequency con-
tent. We were therefore motivated to implement an identical spatial-
domain filter in order to exploit localised spatial-frequency rela-
tionships and dependencies leading to a more optimal separation of
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illumination and reflectance content. We have developed such a fil-
ter using the Dual Tree Complex Wavelet Transform (DT-CWT) [9].

For conventional Homomorphic filtering, assumption 2 is a very
generic presumption for all content. Our implemented filter uses the
DT-CWT to exploit the property of cross scale persistence of struc-
tural reflectance thus preserving such content and more optimally
separating the illumination and reflectance components.

This paper is organised as follows. Firstly, an overview of Ho-
momorphic filtering, wavelets and wavelet based Homomorphic
filtering is given in the remaining part of the introduction. This
is followed by a description of the implemented DT-CWT based
filter within section 2. Visual results of using this novel method are
displayed together with quantitative comparisons against alternative
methods within section 3. Finally a discussion and conclusion is
presented in section 4.

1.1. Homomorphic filtering

A Lambertian illumination-reflectance model assumes that the inten-
sity of an image f(x, y) can be represented as the product of illumi-
nation i(x, y) and reflectance r(x, y), i.e.

f(x, y) = i(x, y)r(x, y), (1)

where x and y are the spatial indices of the image pixels. As the
Fourier transform of the product of two functions is not separable
we define:

z(x, y) = ln f(x, y) = ln i(x, y) + ln r(x, y), (2)

Z(u, v) = Fi(u, v) + Fr(u, v), (3)

where Fi(u, v) and Fr(u, v) are the Fourier transforms of ln i(x, y)
and ln r(x, y) respectively. Additionally, u and v are the frequency
indices in the x and y directions respectively. If we define our high
pass filter as H(u, v), then

S(u, v) = H(u, v)Z(u, v) =

H(u, v)Fi(u, v) +H(u, v)Fr(u, v), (4)

where S(u, v) is the Fourier transform of the result. Transforming
back to the spatial domain (where F−1 is the inverse Fourier trans-
form),

s(x, y) = F−1 {S(u, v)}
= F−1 {H(u, v)Fi(u, v)}+ F−1 {H(u, v)Fr(u, v)}

(5)

where the first term due to the illumination is expected to be attenu-
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f(x, y) ln FFT H(u, v) FFT−1 exp g(x, y)

Fig. 1. Homomorphic filtering in the using the FFT

ated by the filter H . The output image can be expressed as

g(x, y) = es(x,y). (6)

H(u, v) is commonly implemented using a circularly symmetric
boosted Butterworth high pass filter [1] that can be defined as

H(u, v) =

(
1− 1

β

)
1

1 +
[

D0
D(u,v)

+
]2m +

1

β
(7)

where D(u, v) and D0 are the radial frequency and the cutoff fre-
quency respectively (both measured from the origin), β represents
the relative high frequency boost and m determines the order of the
filter. Although these parameters can be arbitrarily chosen, typical
values of [β = 3, D0 = 0.3 and m = 2] have been selected that
gave good results in the experiments below. A cross section of the
frequency response of H(u, v) using these parameters is shown in
Fig. 5. This shows the high-pass nature of the filter and how the low
frequencies are attenuated leading to DC being reduced by a factor
of 3 (from β = 3). A general block diagram of the algorithm is
illustrated in Fig. 1.

1.2. Wavelet Based Homomorphic Filtering

Implementing the high pass filter H within the frequency domain
only allows the frequency content to be modified globally. Spa-
tial filters such as Difference of Gaussian (DoG) filters [8] and
wavelets [2, 3, 5–7] have been used to locally implement the high
pass filter H .

Yoon and Ro [4] have implemented H by simply weighting wavelet
coefficients according to an equivalent Butterworth filter response
at the central frequency of each subband. Similarly, Guta et al. [2]
have just implemented hard and soft-thresholding constraints within
all of the high pass wavelet subbands. Conversely, Gorgel et al. [3]
have implemented an illumination normalisation system by imple-
menting wavelet coefficient shrinkage on the high pass subbands
and a separate Homomorphic filtering on the low pass subbands.

However, none of these methods have adequately exploited the spa-
tial localisation of wavelet transforms and also have (in the majority
of cases) used real valued wavelets that do not provide the improved
characteristics of the DT-CWT exploited within our work.

1.3. The Dual Tree Complex Wavelet Transform (DT-CWT)

In order to adapt to local content, a spatial domain filter will need to
be used. We have selected the DT-CWT over a conventional wavelet
transform as it offers the following advantages.

• An efficient filter-bank implementation,
• Limited redundancy (4 to 1 for images),
• Shift-invariance,
• Improved directional selectivity over the conventional Dis-

crete Wavelet Transform (DWT).

f(x, y) ln DTCWT W DTCWT−1 exp g(x, y)
B BW

Fig. 2. Homomorphic filtering using the DTCWT

The DT-CWT is implemented using two decomposition trees using
iterated Hilbert pairs of filters that form real and imaginary compo-
nents for each of the six directionally orientated subbands [9].

2. IMPLEMENTATION

2.1. Homomorphic Filter using the DT-CWT

Fig. 2 shows our Homomorphic filter implemented using the DT-
CWT. It mirrors the implementation shown in Fig. 1 but with the
high-pass filter implemented using W , a weighted DT-CWT trans-
form. W uses a forward and backward DT-CWT and weights the
subband coefficients as follows.

The output of the DT-CWT in Fig. 2 is a set of indexed complex
subbands B = {b1, b2, . . . , bn}. Where n = 2 + 6J is the total
number of subbands (J is number of decomposition levels1). The
weight of each subband is calculated as

wk = H(uk, vk), (8)

where k ∈ {1, 2, . . . , n} and uk and vk define the maximum fre-
quency response position of the basis function for subband k (cal-
culated on a 512 × 512 grid). The output of the high pass filter W
is therefore the set of subbands BW = {bW1 , bW2 , . . . , bWn } where
each bWk is defined as the product of the input subband bk and the
associated weight wk calculated from (8):

bWk = bkwk for k = 1, 2, . . . , n. (9)

Fig. 5 shows the frequency response of the entire weighted DT-CWT
2D filter (sampled across the horizontal frequency axis) compared
to H(u, v). This shows that the filter implemented using the DT-
CWT is a good match to H(u, v). However, in order to make the
filter have an even closer match to H(u, v) we have generated mod-
ified weights wck. These modified weights are generated using the
Nelder-Mead Simplex method [10] using the Chebyshev error as the
objective function to be minimised across the two dimensional fre-
quency domain (sampled across a grid of 512× 512). Additionally,
the following constraints are imposed on the minimisation process:

• The weights monotonically increase as wavelet scale in-
creases (for each orientation),

• The weights for orientations +45◦ and -45◦ are assumed to be
identical (for each wavelet scale),

• The weights for orientations +15◦, -15◦, +75◦ and -75◦ are
assumed to be identical (for each wavelet scale),

• The DC weight (H(0, 0) given to the low pass subbands) is
not changed and directly used to weight the low pass sub-
bands.

The 2D Chebyshev error is defined as

‖E(u, v)‖∞ = max
u∈[0,π],v∈[0,π]

|M(u, v) (W (u, v)−H(u, v)) | (10)

1J is set to 3 for all experiments within this paper
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Fig. 4. Homomorphic filter implemented using FFT, DTCWT and
DTCWT with Chebyshev weights (Original: Im3 from Fig. 7).

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

v/π

 

 

H(0,v)
DTCWT Original Weights
DTCWT Chebyshev Weights

Fig. 5. Highpass filter using the FFT, DT-CWT with sampled
weights and Chebyshev Weights (slice through u = 0 within Fig. 3)

whereW (u, v) andH(u, v) are the sampled (on a grid of 512×512)
frequency responses of W (including the forward and inverse DT-
CWT) and H respectively. M(u, v) is a weighting function defined
as a 2D isotropic Gaussian with mean at the origin and σ = 3.
This weighting function emphasises the importance of the central
frequencies.

Fig. 3 shows the two dimensional surface representation of H(u, v)
for the parameters given above. Using the Chebyshev error method
for obtaining the DT-CWT weights the two dimensional frequency
response of the weighted DT-CWT is shown on the right of Fig. 3.
Fig. 3 and Fig. 5 together show that the method is able to accurately
model the shape of the Butterworth filter. Furthermore, Fig. 4 shows
the output of three filters of the top left face shown in Fig. 7. This
figure illustrates how the DT-CWT implementation of the Homo-

morphic filter is visually indistinguishable from the FFT version.

2.2. Cross-Scale Weighting of the DT-CWT based Filter

The sampled and Chebyshev-error based weights of the DT-CWT
derived above will unnecessarily attenuate non-illumination con-
tent. It has been recognised that structural content within natural
images results in high correlation across co-located coefficients
within the wavelet domain [11, 12]. Within our work the weights
wck are adjusted for each coefficient according to the co-located
coefficient magnitudes of the child subband one scale higher in fre-
quency (cj−1,θ) where j and θ are the scale and orientation of the
considered coefficient. cj−1,θ is defined as the magnitude of the
co-located coefficient within the resized subband (using the Matlab
imresize function). A more in depth description of cross-scale
correspondences and models within the DT-CWT transform domain
is given by Hill et al. [13].

2.2.1. Bayesian Estimation of Modified Weights

Cross-scale persistence of structural content has been exploited
within wavelet based denoising algorithms [11]. This property can
also be exploited to modify the weight wck of each coefficient in
order to optimise Homomorphic filter attenuation; specifically to
better retain structural coefficients where large magnitude child
coefficients indicates content more likely attributable to structural
/ reflectance based content. Therefore we assume that the optimal
weight ock of each coefficient is a linear sum of the given weightwck
and an associated (uncorrelated) noise signal. Dropping the suffix ck
for clarity and using Bayes’ rule we obtain a Maximum-a-Posteriori
(MAP) estimate for (ock):

ô = arg max
o

P (o|w) = arg max
o

P (w|o)P (o) (11)

For simplicity we assume both the likelihood P (w|o) and prior P (o)
to be normally distributed.

likelihood P (w|o) = N (µl, σ
2
l ) (12)

prior P (o) = N (µp, σ
2
p) (13)

The optimised weight (ô) is the MAP estimate of (11) given by the
mean of the product distribution P (w|o)P (o). After some simple
manipulations we find

ô =
µlσ

2
p + µpσ

2
l

σ2
l + σ2

p

, (14)

where σl = 1, µl = wck and µp = 1. σp is defined as 1/cj−1,θ .
These parameter definitions ensure that the optimal weights ô ap-
proach unity for large values of cj−1,θ . This enables coefficients
that have co-located high frequency content to be less attenuated as
they are assumed to be attributable to structural reflectance content.
Conversely, as the value of cj−1,θ decreases toward zero, the output
weight ô will approach the originally defined weight wck resulting
in same level of filter attenuation as given in section 2.1.

3. RESULTS

3.1. Dataset

Fig. 6 and Fig. 7 show the images used for testing our approach. Im-
age pairs 1-3 in Fig. 6 show three scenes captured from the Second
Life rendering engine [14]. The first image (Im1) for each scene
has no global illumination whereas the second image (Im2) has a
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Table 1. PSNR and SSIM results for images shown in Fig. 6. All processing on Im2. All comparisons are from processed images to Im1.
FFT Homomorphic DT-CWT Homomorphic DT-CWT Chebyshev Bayesian DT-CWT

Image Pair 1 PSNR 11.7901 11.7657 11.9175 15.3485
SSIM 0.7286 0.7260 0.7278 0.7573

Image Pair 2 PSNR 13.0228 12.9934 13.1841 17.5036
SSIM 0.7571 0.7595 0.7577 0.8012

Image Pair 3 PSNR 10.0270 9.9982 10.1207 13.9505
SSIM 0.6361 0.6329 0.6356 0.7232

global illumination generated from the sun and ambient occlusion.
The lighting model within Second Life is generated using a Gaussian
Bi-directional Reflectance Distribution Function (BRDF) [15]. The
use of this model gives realistic illumination variations over a set of
images while giving a precise (non illuminated) ground truth. Two
pairs of faces are shown in Fig. 7. Each pair show the same face un-
der two illumination conditions obtained from “The Extended Yale
Face Database B” [16].

3.2. Comparison of Results

Fig. 6 shows the results of a range of Homomorphic filtering tech-
niques of Im2 (to be directly compared to Im1). The FFT based
filter is able to attenuate the effect of illumination (each FFT Ho-
momorphic filtered pair are consistently similar for all pairs). The
Bayesian DT-CWT based method is able to retain more low pass
information where there is high frequency content. Table 1 shows
the PSNR and SSIM (the structural similarity metric [17]) values for
the images shown in Fig. 6. This shows the difference between the
processed versions of Im2 and the original “non-illuminated” im-
age Im1. This table shows that the DT-CWT Homomorphic and
DT-CWT Chebyshev methods give virtually identical results (as ex-
pected) for all three image pairs. The Bayesian DT-CWT method
gives significantly better results for both PSNR and SSIM.
The results in Fig. 7 further demonstrates that FFT Homomorphic
filtering is able to attenuate the effect of illumination. However, (as
above) the Bayesian DT-CWT method is able to retain more low pass
information where there is also co-located high-frequency content.

4. CONCLUSION

This paper has presented an improved Homomorphic filter for illu-
mination invariant processing. It also proposes a 2D filter design
structure to match a 2D frequency domain filter (in this case a But-
terworth filter) with a weighted DT-CWT transform. The results of
the new Bayesian DT-CWT based Homomorphic filter show con-
siderable quantitative and qualitative improvements over the FFT
based method while offering a flexible framework for implementing
frequency domain spatial filtering.
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