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ABSTRACT

A novel adaptation of the two dimensional Homomorphic filter is
introduced using the Dual Tree Complex Wavelet Transform for im-
proved illumination invariant processing. The Homomorphic filter
is conventionally implemented within the log-Fourier domain using
an isotropic high-pass filter based on the assumption that the illumi-
nation signal occupies low spatial frequencies. In this case however,
low frequency structural reflectance content will be incorrectly at-
tenuated. Our method implements the Homomorphic filter using the
DT-CWT and exploits the property of cross scale persistence (for
structural content) to generate a filter that retains cross scale content
and therefore reduces incorrect attenuation of structural reflectance
content.

Index Terms— Wavelet, Homomorphic, I[llumination

1. INTRODUCTION

Two dimensional Homomorphic filtering is a standard image en-
hancement technique that normalizes and stretches the contrast
within an image while simultaneously attenuating image content
attributable to surface illumination [1]. It is used in many imaging
applications such as medical image enhancement [2—4], illumination
invariant pre-processing for face recognition [5-8] and general im-
age illumination normalisation [1]. Conventionally, Homomorphic
filtering is implemented using an isotropic high pass filter (such
as the Butterworth filter) within the Fourier domain [1]. However,
recent work has used wavelet transforms [2,3,5-7].

Homomorphic filtering makes the following assumptions:
1. Ilumination and reflectance are multiplicative.

2. High and low spatial frequency content is assumed to repre-
sent mostly reflectance and illumination respectively.

The Homomorphic filter initially takes the logarithm of image in-
tensity making the illumination and reflectance components additive
and therefore linearly separable in the frequency domain. A high
pass filter is then used on the log intensity of the image. This fil-
ter suppresses low frequencies (and therefore illumination content)
while amplifying high frequencies (and therefore reflectance con-
tent) within the log-intensity domain.

Frequency domain filtering can only affect global frequency con-
tent. We were therefore motivated to implement an identical spatial-
domain filter in order to exploit localised spatial-frequency rela-
tionships and dependencies leading to a more optimal separation of
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illumination and reflectance content. We have developed such a fil-
ter using the Dual Tree Complex Wavelet Transform (DT-CWT) [9].

For conventional Homomorphic filtering, assumption 2 is a very
generic presumption for all content. Our implemented filter uses the
DT-CWT to exploit the property of cross scale persistence of struc-
tural reflectance thus preserving such content and more optimally
separating the illumination and reflectance components.

This paper is organised as follows. Firstly, an overview of Ho-
momorphic filtering, wavelets and wavelet based Homomorphic
filtering is given in the remaining part of the introduction. This
is followed by a description of the implemented DT-CWT based
filter within section 2. Visual results of using this novel method are
displayed together with quantitative comparisons against alternative
methods within section 3. Finally a discussion and conclusion is
presented in section 4.

1.1. Homomorphic filtering

A Lambertian illumination-reflectance model assumes that the inten-
sity of an image f(x,y) can be represented as the product of illumi-
nation i(x, y) and reflectance r(z, y), i.e.

[l y) =iz, y)r(z,y), ¢))

where x and y are the spatial indices of the image pixels. As the
Fourier transform of the product of two functions is not separable
we define:

2(z,y) = In f(x,y) = Ini(z,y) +Inr(z,y), (©)

Z(u,v) = Fi(u,v) + Fr(u,v), 3)

where F;(u,v) and Fr(u,v) are the Fourier transforms of In i(z, y)
and In r(z, y) respectively. Additionally, u and v are the frequency
indices in the x and y directions respectively. If we define our high
pass filter as H (u, v), then
S(u,v) = H(u,v)Z(u,v) =
H(ua U)Fi(uv ’U) +H(U7U)F7‘(u7v)7 4)
where S(u,v) is the Fourier transform of the result. Transforming

back to the spatial domain (where § ~1 is the inverse Fourier trans-
form),

7 {S(u,v)}
. {H (u,v)F;(u,v)} + gt {H (u,v)F(u,v)}
5)

where the first term due to the illumination is expected to be attenu-

S($,y) =
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Fig. 1. Homomorphic filtering in the using the FFT

ated by the filter H. The output image can be expressed as

g(z,y) = Y. (6)

H (u,v) is commonly implemented using a circularly symmetric
boosted Butterworth high pass filter [1] that can be defined as

1 1 1
H(va):(l—*>—2m+* @)
Ea [Dgfvﬁ] 0

where D(u,v) and Dg are the radial frequency and the cutoff fre-
quency respectively (both measured from the origin), 5 represents
the relative high frequency boost and m determines the order of the
filter. Although these parameters can be arbitrarily chosen, typical
values of [ = 3, Dy = 0.3 and m = 2] have been selected that
gave good results in the experiments below. A cross section of the
frequency response of H (u,v) using these parameters is shown in
Fig. 5. This shows the high-pass nature of the filter and how the low
frequencies are attenuated leading to DC being reduced by a factor
of 3 (from 8 = 3). A general block diagram of the algorithm is
illustrated in Fig. 1.

1.2. Wavelet Based Homomorphic Filtering

Implementing the high pass filter H within the frequency domain
only allows the frequency content to be modified globally. Spa-
tial filters such as Difference of Gaussian (DoG) filters [8] and
wavelets [2, 3, 5-7] have been used to locally implement the high
pass filter H.

Yoon and Ro [4] have implemented H by simply weighting wavelet
coefficients according to an equivalent Butterworth filter response
at the central frequency of each subband. Similarly, Guta et al. [2]
have just implemented hard and soft-thresholding constraints within
all of the high pass wavelet subbands. Conversely, Gorgel et al. [3]
have implemented an illumination normalisation system by imple-
menting wavelet coefficient shrinkage on the high pass subbands
and a separate Homomorphic filtering on the low pass subbands.

However, none of these methods have adequately exploited the spa-
tial localisation of wavelet transforms and also have (in the majority
of cases) used real valued wavelets that do not provide the improved
characteristics of the DT-CWT exploited within our work.

1.3. The Dual Tree Complex Wavelet Transform (DT-CWT)

In order to adapt to local content, a spatial domain filter will need to
be used. We have selected the DT-CWT over a conventional wavelet
transform as it offers the following advantages.

e An efficient filter-bank implementation,

e Limited redundancy (4 to 1 for images),

e Shift-invariance,

o Improved directional selectivity over the conventional Dis-
crete Wavelet Transform (DWT).

w
f(z,y)+ In | DTCWT 1B w B DTCWT~! b exp b g(z,y)

Fig. 2. Homomorphic filtering using the DTCWT

The DT-CWT is implemented using two decomposition trees using
iterated Hilbert pairs of filters that form real and imaginary compo-
nents for each of the six directionally orientated subbands [9].

2. IMPLEMENTATION

2.1. Homomorphic Filter using the DT-CWT

Fig. 2 shows our Homomorphic filter implemented using the DT-
CWT. It mirrors the implementation shown in Fig. 1 but with the
high-pass filter implemented using W, a weighted DT-CWT trans-
form. W uses a forward and backward DT-CWT and weights the
subband coefficients as follows.

The output of the DT-CWT in Fig. 2 is a set of indexed complex
subbands B = {b1,b2,...,bn}. Where n = 2 + 6J is the total
number of subbands (J is number of decomposition levels'). The
weight of each subband is calculated as

wi = H(ug, vg), (8

where k € {1,2,...,n} and ux and vy define the maximum fre-
quency response position of the basis function for subband £ (cal-
culated on a 512 x 512 grid). The output of the high pass filter W
is therefore the set of subbands B™ = {bV, b5 ,... b% } where
each b)Y is defined as the product of the input subband by and the
associated weight wy, calculated from (8):

by =brwy for k=1,2,...,n. ©)

Fig. 5 shows the frequency response of the entire weighted DT-CWT
2D filter (sampled across the horizontal frequency axis) compared
to H(u,v). This shows that the filter implemented using the DT-
CWT is a good match to H(u,v). However, in order to make the
filter have an even closer match to H (u, v) we have generated mod-
ified weights wci. These modified weights are generated using the
Nelder-Mead Simplex method [10] using the Chebyshev error as the
objective function to be minimised across the two dimensional fre-
quency domain (sampled across a grid of 512 x 512). Additionally,
the following constraints are imposed on the minimisation process:

e The weights monotonically increase as wavelet scale in-
creases (for each orientation),

e The weights for orientations +45° and -45° are assumed to be
identical (for each wavelet scale),

e The weights for orientations +15°, -15°, +75° and -75° are
assumed to be identical (for each wavelet scale),

e The DC weight (H(0,0) given to the low pass subbands) is
not changed and directly used to weight the low pass sub-
bands.

The 2D Chebyshev error is defined as

IE(u,v)lloo = max [M(u,v) (W(u,v) = H(u,v))| (10)
uw€[0,w],ve[0,m]

17 is set to 3 for all experiments within this paper
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Fig. 3. 2D frequency response of H (u,v) and W
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Fig. 4. Homomorphic filter implemented using FFT, DTCWT and
DTCWT with Chebyshev weights (Original: Im3 from Fig. 7).
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Fig. 5. Highpass filter using the FFT, DT-CWT with sampled
weights and Chebyshev Weights (slice through v = 0 within Fig. 3)

where W (u, v) and H (u, v) are the sampled (on a grid of 512x 512)
frequency responses of W (including the forward and inverse DT-
CWT) and H respectively. M (u,v) is a weighting function defined
as a 2D isotropic Gaussian with mean at the origin and ¢ = 3.
This weighting function emphasises the importance of the central
frequencies.

Fig. 3 shows the two dimensional surface representation of H (u, v)
for the parameters given above. Using the Chebyshev error method
for obtaining the DT-CWT weights the two dimensional frequency
response of the weighted DT-CWT is shown on the right of Fig. 3.
Fig. 3 and Fig. 5 together show that the method is able to accurately
model the shape of the Butterworth filter. Furthermore, Fig. 4 shows
the output of three filters of the top left face shown in Fig. 7. This
figure illustrates how the DT-CWT implementation of the Homo-

morphic filter is visually indistinguishable from the FFT version.

2.2. Cross-Scale Weighting of the DT-CWT based Filter

The sampled and Chebyshev-error based weights of the DT-CWT
derived above will unnecessarily attenuate non-illumination con-
tent. It has been recognised that structural content within natural
images results in high correlation across co-located coefficients
within the wavelet domain [11, 12]. Within our work the weights
wer are adjusted for each coefficient according to the co-located
coefficient magnitudes of the child subband one scale higher in fre-
quency (cj—1,0) where j and 6 are the scale and orientation of the
considered coefficient. c;j_1,¢ is defined as the magnitude of the
co-located coefficient within the resized subband (using the Matlab
imresize function). A more in depth description of cross-scale
correspondences and models within the DT-CWT transform domain
is given by Hill et al. [13].

2.2.1. Bayesian Estimation of Modified Weights

Cross-scale persistence of structural content has been exploited
within wavelet based denoising algorithms [11]. This property can
also be exploited to modify the weight w. of each coefficient in
order to optimise Homomorphic filter attenuation; specifically to
better retain structural coefficients where large magnitude child
coefficients indicates content more likely attributable to structural
/ reflectance based content. Therefore we assume that the optimal
weight o, of each coefficient is a linear sum of the given weight we
and an associated (uncorrelated) noise signal. Dropping the suffix ck
for clarity and using Bayes’ rule we obtain a Maximum-a-Posteriori
(MAP) estimate for (ocx):

0 = arg max P(o|lw) = arg max P(w|o) P (o)

an
For simplicity we assume both the likelihood P(w|o) and prior P(0)
to be normally distributed.
likelihood  P(w)o)
P(o)

= N(u,07) (12)
= N(pp, 73) (13)
The optimised weight (6) is the MAP estimate of (11) given by the

mean of the product distribution P(w|o)P (o). After some simple
manipulations we find

prior

2 2
o= M T 1oL (14)

of +o;p
where 0, = 1, i = wer and pp = 1. 0y is defined as 1/c¢;-1,9.

These parameter definitions ensure that the optimal weights 6 ap-
proach unity for large values of c;j_1,¢. This enables coefficients
that have co-located high frequency content to be less attenuated as
they are assumed to be attributable to structural reflectance content.
Conversely, as the value of c;_1 ¢ decreases toward zero, the output
weight 0 will approach the originally defined weight w.) resulting
in same level of filter attenuation as given in section 2.1.

3. RESULTS

3.1. Dataset

Fig. 6 and Fig. 7 show the images used for testing our approach. Im-
age pairs 1-3 in Fig. 6 show three scenes captured from the Second
Life rendering engine [14]. The first image (Im1) for each scene
has no global illumination whereas the second image (Im2) has a
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Table 1. PSNR and SSIM results for images shown in Fig. 6. All processing on Im2. All comparisons are from processed images to Im1.

FFT Homomorphic DT-CWT Homomorphic DT-CWT Chebyshev Bayesian DT-CWT
Image Pair 1 PSNR 11.7901 11.7657 11.9175 15.3485
& SSIM 0.7286 0.7260 0.7278 0.7573
Image Pair 2 PSNR 13.0228 12.9934 13.1841 17.5036
g SSIM 0.7571 0.7595 0.7577 0.8012
Image Pair 3 PSNR 10.0270 9.9982 10.1207 13.9505
g SSIM 0.6361 0.6329 0.6356 0.7232
global illumination generated from the sun and ambient occlusion. Iml Im2 FFT  Bayesian DT-CWT
Homomorphic

The lighting model within Second Life is generated using a Gaussian
Bi-directional Reflectance Distribution Function (BRDF) [15]. The
use of this model gives realistic illumination variations over a set of
images while giving a precise (non illuminated) ground truth. Two
pairs of faces are shown in Fig. 7. Each pair show the same face un-
der two illumination conditions obtained from “The Extended Yale
Face Database B” [16].

3.2. Comparison of Results

Fig. 6 shows the results of a range of Homomorphic filtering tech-
niques of Im2 (to be directly compared to Im1). The FFT based
filter is able to attenuate the effect of illumination (each FFT Ho-
momorphic filtered pair are consistently similar for all pairs). The
Bayesian DT-CWT based method is able to retain more low pass
information where there is high frequency content. Table 1 shows
the PSNR and SSIM (the structural similarity metric [17]) values for
the images shown in Fig. 6. This shows the difference between the
processed versions of Im2 and the original “non-illuminated” im-
age Im1. This table shows that the DT-CWT Homomorphic and
DT-CWT Chebyshev methods give virtually identical results (as ex-
pected) for all three image pairs. The Bayesian DT-CWT method
gives significantly better results for both PSNR and SSIM.

The results in Fig. 7 further demonstrates that FFT Homomorphic
filtering is able to attenuate the effect of illumination. However, (as
above) the Bayesian DT-CWT method is able to retain more low pass
information where there is also co-located high-frequency content.

4. CONCLUSION

This paper has presented an improved Homomorphic filter for illu-
mination invariant processing. It also proposes a 2D filter design
structure to match a 2D frequency domain filter (in this case a But-
terworth filter) with a weighted DT-CWT transform. The results of
the new Bayesian DT-CWT based Homomorphic filter show con-
siderable quantitative and qualitative improvements over the FFT
based method while offering a flexible framework for implementing
frequency domain spatial filtering.
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