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ABSTRACT

Model based iterative reconstruction (MBIR) algorithms have
been used to greatly improve image quality and temporal res-
olution in synchrotron based time-space Computed Tomogra-
phy (CT). Among the various optimization methods that have
been used for MBIR, iterative coordinate descent (ICD) has
relatively lower computational requirements because it con-
verges fast. In spite of that, long execution time remains a
barrier for the widespread use of MBIR. In this paper, we
present a new data structure, called VL-Buffer, for time-space
reconstruction that significantly improves the cache locality
while retaining good parallel performance. Experimental re-
sults show an average speedup of 40% using VL-Buffer.

Index Terms— Time-Space Image Reconstruction, Mul-
ticore, High Performance Computing

1. INTRODUCTION

Synchrotron based X-rays are used for 3D imaging of mate-
rial samples in a wide range of disciplines, including biology
[1] and materials science [2]. In synchrotron based X-ray CT
tomography, there are two general categories of reconstruc-
tion methods: direct methods such as filtered back projection
(FBP) and iterative methods such as MBIR [3]. MBIR results
in better reconstruction quality and fewer artifacts than FBP
[4]. However, MBIR has a much higher computational cost
than direct methods [3], and this high computation require-
ment has been a barrier to the widespread use of MBIR.
There are two approaches to implement the MBIR op-
timization: simultaneous methods and coordinate descent
methods. Simultaneous methods [5, 6, 7, 8] work by pro-
jecting and back-projecting the entire image to the sinogram
space. The advantage of simultaneous methods is that they
can update all voxels simultaneously which facilitates paral-
lelism, but the disadvantage is that they have relatively slower
convergence [5]. Techniques, such as preconditioning [7] and
ordered subsets [9], are used to speed up the convergence.
However, preconditioning methods can be sensitive to geom-
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etry and ordered subset methods generally slow down global
convergence.

Among iterative methods, ICD [10, 11, 12] has been
shown to have rapid and robust convergence for a wide vari-
ety of geometries, applications and image models. Instead of
hundreds of iterations required in the simultaneous methods
[5], ICD [12] typically converges in 3 to 6 iterations [12, 10].
However, while ICD has rapid convergence, it requires op-
erations that are more difficult to parallelize [13, 14, 15].
Moreover, ICD exhibits poor cache locality because the data
layout requires memory to be accessed in sinusoidal patterns
[16, 17], as shown in Sec.2.1.

Typically, high performance CT image reconstruction can
be summarized into two competing challenges: (1) increasing
the cache locality, and (2) increasing the parallelism [17]. In
this paper, we call voxels that are far away from each other as
“loosely coupled” and neighboring voxels as “strongly cou-
pled”. Loosely coupled voxels have fewer measurements in
common and fewer dependencies in the voxel updates, en-
abling good parallel performance. However, loosely coupled
voxels also suffer from poor cache locality. On the other hand,
strongly coupled voxels have higher cache locality and more
measurements in common. But they suffer from poor par-
allel performance due to the data dependencies. Therefore,
the best solution is to find certain voxels that allow increased
cache locality without negating parallel performance. In this
paper, we propose a new data structure, the voxel line mem-
ory buffer (VL-Buffer), to meet both goals.

We make the following contributions:

1. We describe the performance issues inherent in voxel
lines.

2. We propose the idea of the VL-Buffer to increase cache
locality and prefetching. In addition, VL-Buffer reads
non-coalesced measurements in a coalesced way.

3. We show experimental results that VL-Buffer leads to
an average 40% speedup on each core. In addition, VL-
Buffer does not worsen parallel performance.

In Sec. 2.1, we provide background information and we
review the concept of voxel line. In Sec. 2.2, we present the
mathematical formulation of MBIR. In Sec. 3, we describe
how the VL-Buffer enables fast voxel line updates. Finally
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Fig. 1: (a) Illustrates the forward projections of the red voxels
and the yellow voxels on a synchrotron based X-ray CT scan-
ner. (b) Shows how the measurement data collected from the
CT scanner is organized into the sinogram.

in Sec. 4, we implement the VL-Buffer in MBIR to recon-
struct a real data set collected by synchrotron based X-ray CT
scanner.

2. BACKGROUND

2.1. Synchrotron Based X-ray CT System

Fig. 1(a) illustrates how a typical parallel beam synchrotron
based X-ray CT system operates. We let h;, ho and hg de-
note the coordinate vectors of a right-handed coordinate sys-
tem, where vectors h; and ho are perpendicular to the axis
of the rotation. Vector h3 points along the axis of rotation.
The object to be imaged is mounted on a rotating stage. As
the object rotates about h3, the CT system takes a set of mea-
surements at each view angle, 6, from all the elements of the
detector array. These measurements from each array element,
r (or channel), are used to estimate py(r), the integral den-
sity of the object along the path from the X-ray source to the
detector.

Typically, the data collected from the scanner is organized
into a sinogram indexed by the view 6, channel r and row
z (or slices), as illustrated in Fig. 1(b). As we project the
source X-rays through individual voxels, the intersecting de-
tector channels, r, at different views, 6, trace out sine wave
patterns. For example, the red voxel and the yellow voxel in
Fig. 1 have sine wave patterns in the sinogram, shown as the
thin red line and the thin yellow line.

To update a voxel value by the ICD algorithm, it is neces-
sary to access this voxel’s corresponding measurements in the
sinogram following these sine wave patterns. Modern proces-
sors access main memory by first transferring blocks of local
memory onto cache lines. These cache lines, shown as short
blue lines in Fig. 1(b), will only partially overlap the red line
or yellow line of memory entries of the sinogram. This means
that most of the space in the cache is used to hold data not
needed for the current voxel update.

One way to avoid the cache line issue is to update vox-

els along hs axis. We call this set of voxels a voxel line and
these voxels share the same geometry calculations [12]. By
allowing voxels on a voxel line to update in a sequential man-
ner, a cache line, shown as a short white line in Fig. 1(b), can
hold more data because the access pattern along the row is
linearized.

Nevertheless, when a voxel line is updated in parallel,
only non-neighboring voxels can be updated simultaneously.
Although different voxels’ traces, belonging to the same voxel
line, do not have any intersection in the sinogram space, there
are still dependencies in calculating the prior function if vox-
els are neighbors (see Sec. 2.2). For example, in Fig. 1, red
and yellow voxels on the voxel line have the same sinusoidal
path in the sinogram space and their voxel traces have no in-
tersections. Neighboring red and yellow voxels, however, can
not be updated in parallel. As the consequence, voxel updates
in parallel need separated cache line for separated voxels and
each cache line fits in less useful data.

Another issue is that the sinusoidal path access along view
direction is still sinusoidal even though a cache line reads in
linearized data. This makes predicting needed measurements
in the near future impossible for the hardware prefetcher.

2.2. Mathematical Model and Objective Function

To better understand the key novelties of this paper, the under-
lying mathematical and algorithmic concepts of MBIR must
first be briefly reviewed. MBIR is based on the numerical
solution to an optimization problem described by

@ = argmin {1(1) — Au)"D(v — Au) + S(u)} (1)
u>0 | 2

where we consider the image u as a vector of size N whose
elements are called voxels. The data v is a vector of size M
equal to the total number of measurements for all voxels. A is
the M x N forward system matrix of the scanner geometry, D
is a diagonal weighting matrix of size M x M containing the
inverse variance of the scanner noise, and S(u) is the regular-
izing prior function which depends upon voxels only. The i*"
diagonal entry of the matrix D, denoted by d;, is proportional
to the photon rate, while inversely proportional to an estimate
of the variance in the measurement v;.

To solve the above optimization problem, the ICD algo-
rithm updates each voxel in sequence to minimize the overall
cost function, while keeping the remaining voxels fixed. For-
mally, the update of the selected voxel u; is given by

Uj 20

Gj = argmin {;(v — Au)TD(v — Au) + S(u)} 2

To simplify its computation and potentially speed up the ICD
algorithm, we use a variable ¢ = v — Au to replace the term
v — Au. In addition, we also need the first derivative and
the second derivative of the cost function with respect to u;,
denoted by ¢; and 8, respectively, to compute %;. They can
be expressed by using the following equations:
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where e; is the i'" element in the error term. By using

Eqn. (3), we can further simplify Eqn. (2) as:
. 92 (’I‘ -1 ')2
Uj argrrnzlgl {91r + fj

+ f(r, Uaj)} “
Where @; is the j voxel’s value before the update and
f(r,up;) is a function of the 26 neighbors of the voxel u; in
three dimensional space.

After the j*" voxel is updated, we then update the error
term required for the ICD algorithm in the following way:

€F€+A*j(uj‘—’l]j) (®)]

3. EXTENSION

A good single core performance is essential for high perfor-
mance computing. In this section, we discuss how a voxel
line and VL-Buffers can meet the competing goals of good
cache locality and good parallel performance.

A voxel line is a special group of voxels that is both
strongly coupled and loosely coupled, meeting both goals
of cache locality and parallelism. A voxel line is strongly
coupled because voxels are grouped together along hg axis,
sharing the same access pattern. A voxel line is loosely cou-
pled because its voxel traces belong to different rows in the
sinogram with no or little intersection among them.! Previous
research [4], has shown that multicores can work in parallel
efficiently on non-neighboring voxels of a voxel line.

Contrary to the well-studied parallelism on a voxel line,
also known as inter-slice parallelism [17], the voxel line’s

'The actual number of intersections depends on the voxel size and the
projector model.
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Fig. 2: Measurement data in a voxel line is copied into VL-
Buffer so that a cache line (shown in white arrows) can fit
more useful data and sinusoidal voxel traces (shown in blue
line) are straightened out. In addition, non-coalesced mea-
surements are read in a coalesced way into VL-Buffers.
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cache locality advantage has never been studied because of
the issues mentioned in Sec. 2.1. To recapture the discussion,
there are two inherent issues. First of all, the cache line might
not be used efficiently if multiple computing cores update a
voxel line in parallel. As shown in Fig. 1, non-neighboring
voxels can be updated in parallel. Nevertheless, since vox-
els are not neighbors, there have to be two independent cache
lines reading their measurements and each cache line holds
much unneeded data.

The other issue is that the sinusoidal path for voxel traces
makes computer hardware prefetching impossible. A com-
puter prefetcher can predict data needed in the near future and
prefetch these data into cache ahead of time if the data access
pattern follows a linearized pattern. Although the data access
pattern in the same view in the sinogram space follows a lin-
earized pattern, the data access pattern across different views
follows a sinusoidal path, making prefetching impossible and
leading to a high cache miss rate.

To address the above issues, we introduce a new data
structure, called the VL-Buffer. In creating VL-Buffers for
each computing core, the memory accesses in the voxel
line in Fig. 2 are copied to two localized memory spaces,
namely VL-Buffers, shown as aquamarine color rectangles
in the same figure. One VL-Buffer stores measurements for
the voxel traces of odd number rows and the other stores
measurements for the voxel traces of even number rows.
Therefore, each row of a VL-Buffer consists of linearized and
coalesced data in a view angle, 8, of odd number rows or even
number rows.

In Fig. 2, white arrows show the cache line in the sino-
gram space and in the VL-Buffer. We can see that by cre-
ating VL-Buffers, non-coalesced measurements of the sino-
gram becomes coalesced. In addition, red voxels’ measure-
ments (or yellow voxels’) need only one cache line and more
useful measurements will fit into this cache line. Thus the
spatial locality significantly improves. In addition, the VL-
Buffer lays out in a way that the sinusoidal path can fol-
low a complete straight line pattern that is ideal for hardware
prefetching. In Fig. 2, the blue line in the sinogram space
shows the sinusoidal path in the sinogram space. This si-
nusoidal path is straightened out in the VL-Buffer and thus
increases computer hardware prefetching.

A major difficulty of VL-Buffers comes from the update
of the error term in Eqn. 5. We can see from this equation that
ICD requires an update to the sinogram space after each voxel
update. It means that we need to copy an updated VL-Buffer
to the full sinogram space after each voxel update. This over-
head in copying can be significant when the number of cores
is large. Since the measurements among different voxels on
the same voxel line have no intersection at all, Eqn. 5 can be
postponed until the entire voxel line is updated. After that,
all measurements in the VL-Buffers are purged out and the
VL-Buffers are ready for other voxel lines. By doing this, a
full sinogram is updated exactly once for a voxel line. At the
same time, all of the measurement data needed for a voxel line
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Fig. 3: (a) The blue curve shows the baseline TIMBIR speedup at different numbers of cores. The red curve shows TIMBIR-

VL speedup at different numbers of cores.

Notice that we achieve an average speed up of 40% by using the VL-Buffers.

(b) Ilustrates the data cache miss rate for baseline TIMBIR and TIMBIR-VL. (c) TIMBIR and TIMBIR-VL'’s strong scaling

parallel efficiency at different numbers of cores.

are accessed from the localized VL-Buffers. Intuitively, this
mechanism allows better cache locality and lower memory
copy overhead because we collect all local changes in VL-
Buffers and apply a global change to the full sinogram.

4. EXPERIMENTS

In this section, we will compare MBIR reconstructions with
and without the VL-Buffer data structure. To compare the re-
construction speed, we define the baseline TIMBIR method as
the single core conventional time-interlaced model-based it-
erative reconstruction (TIMBIR) [4], and TIMBIR-VL as the
equivalent but with the addition of the VL-Buffers.

To demonstrate the performance gains achieved by VL-
Buffer in a real physical system, we reconstruct an Al-Cu al-
loy in 4D with 16 sub-frames in the interlaced view sampling,
the same data set used in [18]. The detector width is 1600 pix-
els in the cross-axial direction and 2080 pixels along the axial
direction with a pixel resolution of 0.65 pm % 0.65 pm. In ad-
dition, each voxel line has 24 voxels in the axial direction and
each slice has 2080 x 2080 voxels in the cross-axial direction
with a voxel resolution of 0.65 x 0.65 x 0.65 um3. Therefore,
the reconstructed image volume has size 24 x 2080 x 2080
voxels. Each slice in this data set has (1) 2000 views inter-
laced between 0 and 180 degrees, and (2) 2080 channels uni-
formly sampled over the region of interest. The exposure time
of the detector is set to 4 ms. The regularization parameters
are chosen to provide the best visual reconstruction quality.

In prior extensive experimentation, we have found that a
root-mean-squared error (RMSE) of less than 10 Hounsfield
Unit (HU), with respect to a fully converged volume, consis-
tently results in a high quality reconstruction with little or no
visible convergence artifacts. Therefore, all reconstructions
are converged to reach less than 10 HU of RMSE. All com-
puting performance data in this section was collected on mul-
tiple standard 2.6 GHz clock rate Intel Processors Xeon-E5
2660 v2 with 8 cores in each processor. Each core has a L1
data cache of size 32 KB and a shared L2 data cache of 256
KB. Each core also has a shared L3 cache of 20 MB.

Fig. 3(a) shows the speedup of TIMBIR and TIMBIR-

VL over the baseline TIMBIR at different number of cores.
TIMBIR-VL has a performance increase of 12.6% over TIM-
BIR at 16 cores. This is a direct result of VL-Buffer de-
sign to reduce cache misses and prefetching misses. Over-
all, TIMBIR-VL has a better performance when the number
of cores is large. At 96 cores, TIMBIR reaches a speedup
of 45X while TIMBIR-VL reaches a speedup of 60X, which
is a performance increase of 31.5%. As explained before in
Sec. 3, TIMBIR-VL'’s efficiency will be more prominent with
large number of cores because VL-Buffers allows more non-
coalesced measurements to be read coalescedly.

Fig. 3(b) shows the cache miss rate of TIMBIR (1 core)
and TIMBIR-VL (1 core) at different levels of data cache.
The L2 cache miss rate decreases from 90% to 75%. How-
ever the L3 cache miss rate mildly increases from 5.6% to 7%
because of the memory copy operations in using VL-Buffer.
In addition, the prefetching also contributes to the decrease of
L2 cache misses. The L2 prefetching hit rate increases from
0% to 6% when using VL-Buffer.

The parallel performance is also a point of interest in dis-
cussion. Fig. 3(c) illustrates the strong scaling parallel effi-
ciency in using TIMBIR and TIMBIR-VL. In general, VL-
Buffer does not worsen the parallel efficiency. At 96 cores,
TIMBIR has a parallel efficiency of 48% while TIMBIR-VL
has a parallel efficiency of 63%. It is also interesting to note
that TIMBIR-VL has a super-linear speedup at 32 cores be-
cause of the reduced cache misses. However when the num-
ber of cores further increases, the synchronization overhead
becomes more prominent.

5. CONCLUSIONS

While MBIR provides high quality reconstructions, it is con-
sidered impractical in some applications because of its long
running time. Voxel line updates have been demonstrated
to allow efficient parallel operations and significantly reduce
running time. In spite of that, each core’s performance re-
mains low. In this work, we have introduced VL-Buffer to use
cache much more efficiently. Our experimental results have
shown a speedup of 40% on average by using VL-Buffer.
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