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ABSTRACT

Most matrix completion methods impose a low-rank prior
or its variants to well pose the problem. However, the rank
minimization is problematic to handle matrices with struc-
tural missing. To remedy this, this paper introduces a new
matrix completion method using double priors on the laten-
t matrix, named Reweighted Low-rank and Sparsity Priors.
In the proposed model, the matrix is regularized by a low-
rank prior to exploit the inter-column (row) correlations, and
its columns (rows) are regularized by a sparsity prior under
a dictionary to exploit intra-column (row) correlations. Both
the low-rank and sparse priors are reweighted on the fly to
promote low-rankness and sparsity, respectively. Numerical
algorithm to solve our model is derived via the alternating
direction method under the augmented Lagrangian multipli-
er framework. Experimental results show that our model is
quite effective in recovering matrices with highly-structural
missing, complementing the classic matrix completion mod-
els that handle random missing only.

Index Terms— Matrix completion, low-rank approxima-
tion, sparse representation, inpainting

1. INTRODUCTION

In matrix completion, the latent matrix is assumed to have a
low-rank structure so that the degrees of freedom can be de-
termined by partial observed entries. Candès and Recht [1]
proved that most low-rank matrices can be accurately com-
pleted from a small fraction of known entries under quite mild
conditions, and the intractable rank minimization is relaxed
into the nuclear norm minimization to have an efficient algo-
rithm via convex programming. Low-rank matrix completion
is also proven stable to small and bounded noise [2]. The re-
covery guarantees are improved for the case of bounded rank
in [3]. The basic matrix completion model has many exten-
sions with more powerful modelings, e.g., RPCA [4] and L-
RR [5].

This work was supported by National Natural Science Foundation of
China (NSFC) under Grant 61372084 and 61520106002, and by the Re-
served Peiyang Scholar Program of Tianjin University, Tianjin, China.

Fig. 1. Matrix completion examples. (a) original Lena patch;
(b) observation patch with 30% missing entries shown in
black; (c) IALM [6] (13.47/0.27); (d) SVT [7] (13.93/0.41);
(e) FaLRTC [8] (14.17/0.42), and (f) Ours (35.39/0.96 ). The
performances are measured by (PSNR/SSIM).

Many algorithms have been proposed for solving low-
rank matrix approximation, e.g., the singular value thresh-
olding (SVT) [7], augmented lagrangian multiplier method
(ALM) [6], and accelerated proximate gradient algorithm
(APG) [9]. The nuclear norm is proposed to be iterative-
ly reweighted to promote low-rankness [10], inspired by
the reweighted ℓ1 norm minimization in sparse representa-
tion [11]. Being quite versatile and equipping with efficient
numerical algorithms, low-rank matrix approximation mod-
els achieve prominent performance in many applications such
as face recognition [12], background modeling [13], and 3D
reconstruction [14]. Previous models [1, 2] generally assume
that the locations of missing entries are random, and each
row or column should have some observed entries. Howev-
er, the assumption can be violated in practical applications.
For example, in background modeling, missing locations are
determined by the moving trajectories of foreground object-
s. Another example in Fig. 1, We crop the portion from
the Lena image, some pixels are removed to simulate both
random and entire-row missing. Three previous method-
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s, SVT [7], ALM [6], FaLRTC [8] are able to reconstruct
randomly-missing entries, but cannot handle the entire-row
missing. Liu et al. [5] propose Low-Rank Representation
(LRR), which seeks the lowest rank representation among all
the candidates that can represent the data. This can cluster
the data into their respective subspaces. In [15], the power-
low distribution sampled matrix completion problem has
been addressed instead of matrix sampled randomly. In [16],
the situation that large portions of columns are corrupted,
is considered. However, these methods fail to reconstruct
the entire-row missing matrix. Therefore, the recovery of
structurally-incomplete matrices is still a challenging task.

In this paper, we propose to use reweighted low-rank
and sparsity priors (ReLaSP) to recover matrices with struc-
tural missing. Our model is based on the observation that
rows/columns in interested matrices are signals of strong
intra-correlations, e.g., image lines/blocks, temperature field
at a particular time instant. In our ReLaSP model, the matrix
is regularized by a low-rank prior to exploit inter-column/-
row correlations and simultaneously by a sparsity priors on its
columns to exploit intra-column correlations 1. An alternat-
ing direction method under augmented Lagrangian multiplier
(ALM-ADM) framework is derived to solve the ReLaSP
model. Both the low-rank and sparsity priors are reweighted
at each iteration to promote low-rankness and sparseness. The
effectiveness of our model is demonstrated by experiments
on both synthetic data and image restoration task.

2. PROPOSED RELASP MODEL

2.1. ReLaSP Model

Let D be an incomplete version of matrix A. The observed
matrix D contains both strutural and random missing, and
Ω denotes the index set of known entries. To remedy the
deficiency of the low-rank prior on structural missing, we
further assume that each column of A has sparse presentation
under dictionary Φ, and B is the corresponding coefficient
matrix. Recent work [10, 11] show that reweighing of the
priors significantly promote the sparsity and low-rankness.
Hence,we propose the following matrix completion model
with reweighted low-rank and sparsity priors (ReLaSP):

min tr (Wa ◦ Σ) + γ∥Wb ◦B∥1
s.t. A = ΦB,

PΩ (A) = PΩ (D) ,

(1)

where tr (·) denotes the trace of a matrix, ◦ stands for
the element-wise product of two matrices (also known as
Hadamard product), and Σ := diag ([σ1, σ2, . . . , σn]) is a
diagonal matrix that contains singular values of A with a

1To maintain a concise presentation, we apply the sparsity prior to
columns against entire-row missing. The sparsity prior can also be applied
to columns or both rows and columns to handle column missing or both row-
column missing, respectively.

non-increasing order from σ1 to σn, PΩ (·) denotes the pro-
jection operator onto Ω. Wa and Wb are weighting matrices
for weighted nuclear norm tr (Wa ◦ Σ) and weighted ℓ1 norm
∥Wb ◦B∥1, respectively.

For convenient manipulation, we introduce an auxiliary
error matrix, and transfer the matrix completion problem to a
special case of matrix recovery problem, i.e., setting the miss-
ing entries as zeros. The ReLaSP model can be reformulated
as follows

min tr (Wa ◦ Σ) + γ∥Wb ◦B∥1
s.t. A = ΦB,

A+ E = D,PΩ (E) = 0,

(2)

where E compensates for the missing entries.

2.2. Algorithm for ReLaSP Model

In sparse representation, we minimize the ℓ1 norm instead of
minimizing the non-smooth and non-convex ℓ0 norm. The
reweighting scheme aims to rectify the difference between
the smooth surrogate and the original function [11]. To this
end, small coefficients are assigned with large weights to en-
courage smaller values towards zeros in the next round of op-
timization, while large coefficients are assigned with smal-
l weights conversely. Similarly, the reweighting on the nu-
clear norm is also to further approximate the rank function,
and the weights on singular values are assigned in a similar
way [10]. The weighting matrix Wa and Wb are initialized
at equal weights, and then updated according to the estimated
singular values Σl and coefficient matrix Bl, use the inverse
proportion rule [11]. We present a brief iterative algorithm for
the reweighting framework in Algorithm 1.

Given the weighting matrix, the proposed ReLaSP mod-
el (1) is a minimization function with equality constrains.
We choose the augmented Lagrangian method (ALM) [17] to
handle the equality constraints under an iterative framework.
As the ReLaSP model has multiple sets of variables. We use
the alternative direction method (ADM) [18] to alternatively
optimize one with others fixed at each ALM iteration. We de-
rive the ALM-ADM algorithm for the ReLaSP model (1) in
Algorithm 2. To have a light exposition, the superscript de-
noting iteration index in weighting matrices W l

a and W l
b are

dropped.

Algorithm 1 (Reweighting framwork)
1: Input: Set iteration counter l = 0, W 0

a (i, i) = 1 , W 0
b (i, j)

= 1, ε > 0;
2: while not converged do
3: Solve Al+1 and Bl+1 via Algorithm (2) given W l

a and
W l

b ;
4: W l+1

a (i, i) = 1
σl
i+ε

, W l+1
b (i, j) = 1

|Bl(i,j)|+ε
;

5: end while
6: Output: A
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Algorithm 2 (ALM-ADM algorithm for Model (2))
1: Input: observation matrix D ∈ Rm×n, dictionary Φ ∈

Rm×p, A1 = E1 = Y 1
1 = Y 1

2 = 0 ∈ Rm×n, B1 = 0 ∈
Rp×n, k = 1, µ1

1 = µ1
2 > 0, ρ1 = ρ2 > 1

2: while not converged do
3: t1 = j = 1, Bk

1 = Bk, Z1 = Bk

4: //Line 4-11 solve subproblem-B
5: while not converged do
6: Uj+1 = Zj − µk

1

Lf
Φ⊤

(
ΦZt − 1

µk
1
Y k
1 −Ak

)
7: Bk

j+1 = soft
(
Uj+1,

γ
Lf

Wb

)
8: tj+1 = 1+

√
4t2+1
2

9: Zj+1 = Bk
j+1 +

tj−1
tj+1 (B

k
j+1 −Bk

j )

10: end while
11: Bk+1 = Bk

j+1

12: //Line 12-14 solve subproblem-A
13:

(
Uk,Σk, V k

)
= svd

(
W k

)
W k =

(
Y k
2 − Y k

1 + µk
1ΦB

k+1 − µk
2E

k + µk
2D

)
µk
1 + µk

2

14: Ak+1 = Uksoft
(
Σk, wa

µk
1+µk

2

)
V k⊤

15: //Line 16 solve subproblem-E
16: Ek+1 = PΩ (0) + PΩ̄

(
Y2

µ2
+D −A

)
17: Y1

k+1 = Y k
1 + µk

1(A
k+1 − ΦBk+1)

18: Y2
k+1 = Y k

2 + µk
2(D −Ak+1 − Ek+1)

19: µk+1
1 = ρ1µ

k
1 , µ

k+1
2 = ρ2µ

k
2

20: end while
21: Output: A∗ = Ak+1,Σ∗ = Σk+1

B∗ = Bk+1, E∗ = Ek+1

3. EXPERIMENTAL RESULTS

Our proposed algorithm is evaluated both on synthetic data
and real images. For all the experiments, parameters are set
as follows: ε = 0.001, ρ1 = ρ2 = 1.1, γ = 0.1, µ1 = µ2 =
0.5/max(σ(D)), where σ(D) denotes the singular values of
D. We use relative error (RE) to measure the results: RE =
∥A∗ −A∥F /∥A∥F , where A is the groundtruth and A∗ is the
reconstruction data. The performances in image restoration
are measured by the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [19].

3.1. Results on Synthetic Data

In the synthetic experiment, we construct the low-rank matrix
based on a randomly generated dictionary. With different ma-
trix size (n), matrix rank (rank), missing rate (Mr), entire
row missing rate (Lr), and coefficient sparseness (spa), we
conduct the synthetic experiments under different situation.
Our method is compared with two state-of-the-art algorithms,
i.e., SVT [7] and IALM [6]. Numerical results are shown in

Table 1. RelaSP-0 and RelaSP-2 represent our method with-
out reweighting scheme and with two reweighting iterations,
respectively. We observe that our method achieves the best
result under all the configurations. SVT and IALM can recon-
struct matrices with random missing at low-to-middle missing
rates, but fail at high missing rates. However, both SVT and
IALM fail for all the cases with entire-row missing. RelaSP-2
has better results than RelaSP-0 for most cases, which verifies
the effectiveness of reweighting in sparsity and low-rankness.

3.2. Results on Exact Recoverability

We present a visible result to demonstrate exact recoverabil-
ity of SVT [7] and our model. Test data is generated in the
same way in section 3.1. Results can be seen in Fig. 2 for
rank varies from 1 to 50 and missing rate from 1% to 50%.
For each pair of (rank,Mr), we repeat experiment 7 times
and claim for recovery successfully when RE ≤ 1E − 4.
The results demonstrate the ambiguity and limitation of rank
minimization in regularizing entire-row missing entities.

Fig. 2. Recoverability results of SVT [7] (top row) and
ReLaSP-2 (bottom row). Left column: random missing; mid-
dle column: structural but no entire-row missing; right col-
umn: structural and entire-row missing (Lr = 0.2). The color
varies form white to purple representing recoverability varies
from 100% to 0%.

3.3. Results on Image Restoration

In the experiment, a fixed global dictionary of size 30 × 300
is obtained by online dictionary learning method [22] on Ko-
dak image set [23]. The training data contains 500,000 im-
age segments of the size 30× 1 which are selected randomly.
We divide the input corrupted image into 30 × 512 patch-
es (512 = the width of the image.) in a sliding way, and
apply our algorithm on each patch. Our algorithm is com-
pared with three algorithms, i.e., Fast Low Rank Tensor Com-
pletion (FaLRTC) [8], deterministic annealing method (DA-
based) [20] and OMP [21]. The results of three methods are
generated by the provided codes, and the optimal parameters
are tuned for fair comparison. Table 2 shows results in term
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Table 1. Relative error comparison for matrix reconstruction on synthetic data in different configurations.

Data
Mr 25% 50% 75%

Lr 0% 30% 60% 0% 30% 60% 0% 30% 60%

n=300
rank=15
spa=5%

SVT [7] 1.21E-04 0.2814 0.3858 1.89E-04 0.3908 0.5517 0.1652 0.4891 0.6724
IALM [6] 1.12E-04 0.2814 0.3858 1.64E-04 0.3908 0.5517 0.0012 0.4710 0.6724

MC-ReLaSP-0 4.42E-05 6.92E-05 8.78E-05 7.39E-05 9.09E-05 1.11E-04 1.90E-04 2.63E-04 2.23E-04
MC-ReLaSP-2 5.07E-05 5.36E-05 5.51E-05 7.55E-05 8.37E-05 8.85E-05 9.34E-05 1.02E-04 1.09E-04

n=400
rank=20
spa=7%

SVT [7] 1.16E-04 0.2722 0.3875 1.50E-04 0.3843 0.5498 0.1305 0.6035 0.6652
IALM [6] 9.64E-05 0.2722 0.3875 1.48E-04 0.3843 0.5498 4.49E-04 0.4788 0.6652

MC-ReLaSP-0 4.71E-05 6.20E-05 9.09E-05 6.77E-05 8.58E-05 1.12E-04 1.56E-04 1.62E-04 2.05E-04
MC-ReLaSP-2 5.17E-05 5.41E-05 5.95E-05 7.24E-05 8.10E-05 9.15E-05 9.46E-05 9.74E-05 1.05E-04

n=500
rank=25
spa=10%

SVT [7] 1.10E-04 0.2720 0.3883 1.52E-04 0.3888 0.5493 0.1379 0.4839 0.6703
IALM [6] 1.02E-04 0.2720 0.3883 1.34E-04 0.3888 0.5493 2.78E-04 0.4801 0.6703

MC-ReLaSP-0 4.70E-05 5.73E-05 9.21E-05 6.70E-05 8.97E-05 1.13E-04 1.33E-04 1.45E-04 2.15E-04
MC-ReLaSP-2 5.10E-05 5.59E-05 6.15E-05 7.35E-05 8.42E-05 1.01E-04 9.65E-05 9.63E-05 1.18E-04

Table 2. Quantitative Results (PSNR(dB)/SSIM) for images restoration at different missing rates
Images Mr 5% 10% 20% 30% 50%

Lena

FaLRTC [8] 24.99/0.9048 22.51/0.8053 19.29/0.6404 17.24/0.5468 15.00/0.4106
DA-based [20] 39.35/0.9881 39.60/0.9907 31.45/0.9486 29.25/0.9281 27.57/0.8985

OMP [21] 36.96/0.9745 33.61/0.9526 29.86/0.8985 27.39/0.8588 23.37/0.7484
ReLaSP 46.40/0.9987 42.09/0.9968 37.98/0.9913 35.05/0.9838 31.20/0.9589

Gulls

FaLRTC [8] 30.45/0.9440 26.23/0.8750 22.66/0.7526 20.67/0.6371 18.39/0.5034
DA-based [20] 37.15/0.9933 34.44/0.9919 28.88/0.9737 28.05/0.9659 24.60/0.9256

OMP [21] 36.89/0.9869 34.66/0.9766 30.77/0.9467 28.74/0.9118 25.23/0.8416
ReLaSP 43.82/0.9985 41.72/0.9970 37.08/0.9918 34.69/0.9842 30.22/0.9599

Hill

FaLRTC [8] 27.51/0.9145 21.50/0.8330 19.26/0.7233 17.29/0.6043 15.34/0.4513
DA-based [20] 35.87/0.9832 30.18/0.9470 26.77/0.9318 25.13/0.9104 23.68/0.8588

OMP [21] 35.94/0.9772 33.01/0.9544 29.57/0.9142 27.76/0.8677 23.69/0.7617
ReLaSP 43.09/0.9962 39.44/0.9915 35.90/0.9843 34.04/0.9711 30.02/0.9224

Bridge

FaLRTC [8] 27.77/0.9162 26.22/0.8567 23.23/0.7336 20.39/0.5996 18.83/0.4817
DA-based [20] 35.56/0.9881 32.98/0.9813 31.66/0.9754 28.91/0.9507 29.87/0.9299

OMP [21] 38.94/0.9871 36.57/0.9739 32.83/0.9464 30.27/0.9118 27.04/0.8467
ReLaSP 46.92/0.9988 44.38/0.9973 39.37/0.9921 36.83/0.9842 32.91/0.9606

of PSNR/SSIM. Our method achieves the best performance
for all cases. We observe that the PSNR/SSIM value of FaL-
RTC is relatively lower because of the failure of completing
enire-row missing. The DA-based method has comparable P-
SNR/SSIM values with us at low missing rates, but has lower
values at high missing rate. The OMP method has passable
PSNR but the SSIM is lower because of blur. Visual quality
comparisons on Bridge is shown in Fig. 3. The DA-based
method and OMP can deal with the entire-row missing, but
their results are subject to many line-like artifacts, such as the
surface of the road. The combination of low-rank prior and
sparse prior in our model plays a crucial role in dealing with
random missing and structural missing.

4. CONCLUSION

This paper introduces the Reweighted Low-rank and Sparsi-
ty Priors (ReLaSP). Based on this, a new matrix completion
method is proposed. Both the low-rank and sparse priors are
reweighted on the fly to promote low-rankness and sparsity,
respectively. The reweighted ALM-ADM framework is used
to solve our ReLaSP model. Experimental results show the
superior performance of our ReLaSP model.

Fig. 3. Restoration result of Bridge with 50% pixels missing.
(a) Ground; (b) Damaged; (c) FaLRTC [8] (18.83/0.4817); (d)
DA-based [20] (29.87/0.9299); (e) OMP [21] (27.04/0.8467),
and (f) Ours (32.91/0.9606).
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