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ABSTRACT

In this paper, we propose a method for improving the perfor-
mance of semantic video indexing. Our approach involves ex-
tracting features from multiple convolutional neural networks
(CNNs), creating multiple classifiers, and integrating them.
We employed four measures to accomplish this: (1) utiliz-
ing multiple evidences observed in each video and effectively
compressing them into a fixed-length vector; (2) introducing
gradient and motion features to CNNs; (3) enriching varia-
tions of the training and the testing sets; and (4) extracting
features from several CNNs trained with various large-scale
datasets. Using the test dataset from TRECVID’s 2014 eval-
uation benchmark, we evaluated the performance of the pro-
posal in terms of the mean extended inferred average preci-
sion measure. On this measure, our system’s performance
was 35.7, outperforming the state-of-the-art TRECVID 2014
benchmark performance of 33.2. Based on this work, our
submission at TRECVID 2015 was ranked second among all
submissions.

Index Terms— Semantic video indexing, video search,
CNN, TRECVID, generic object recognition

1. INTRODUCTION

In this paper, we focus on the problem of semantic video
indexing— i.e., the automatic assignment of semantic tags to
video segments. Semantic video indexing is especially useful
for video filtering, searching, and browsing.

Recently, convolutional neural networks (CNNs) have
been widely used for automatic video analysis tasks, and
have consistently outperformed conventional methods. Our
research likewise uses CNN-based feature extraction, but
we present a method for improving the performance of this
method. We undertook the following four efforts:

1. Using multiple observations in each video and com-
pressing them into a fixed-length vector.

2. Introducing gradient and motion features to CNNs.
3. Enriching variations of the training and testing sets by

using flipped images during both the training and the
testing phases.

4. Utilizing other CNNs that were pretrained with various
large-scale image datasets.

This work was supported by JSPS KAKENHI, Grant Number
15K00249.

To evaluate the proposed approach, we used TRECVID’s
2014 benchmark data to facilitate a comparison with state-
of-the-art methods.

2. RELATED WORK

TRECVID is an annual benchmarking conference [1, 2] orga-
nized by the National Institute of Standards and Technology.
At TRECVID, participants work on common tasks using a
common dataset and scoring metrics, such that a comparison
can be made when judging the performance of the various
methods proposed by the participants. TRECVID includes
several tasks every year, but the one most germane to our re-
search is Semantic INdexing (SIN) task. Almost all proposed
methods consist of a fusion of various feature extraction meth-
ods [3, 4, 5, 6, 7]. These methods include conventional im-
age classification methods (local feature extraction followd by
pooling), acoustic feature extraction (with the mel-frequency
cepstral coefficient), motion feature extraction (according to
the dense trajectory [8]), and deep learning (with CNNs).

However, because a tremendous amount of video is needed
to be trained and tested, the computational costs associated
with such tasks lead to considerable bottlenecking. Thus,
large-scale computing resources (i.e., supercomputers) are
needed, especially when high-dimensional feature vectors are
used.

Several CNN implementations with graphical process-
ing units (GPUs) have recently been made available to the
public—e.g., Theano [9], cuda-convnet [10], OverFeat [11],
and Caffe [12]. These implementations are considerably use-
ful when training a large number of samples. In this paper,
therefore, we focus on the ability of the CNN, exclusively
using CNN features, rather than motion features such as the
dense trajectory, or local features such as a scale-invariant
feature transform (SIFT) or a histogram of oriented gradients
(HOG).

3. SYSTEM PERSPECTIVE

Our semantic video indexing pipeline consists of three steps:
extracting features with CNNs, classifying the presence or
absence of a detection target, and fusing multiple classifiers.

We used AlexNet [10], a CNN structure proposed at
ILSVRC 2012. AlexNet contains five convolutional layers
and three fully-connected layers. With our proposed method,
the original image is first inputted to the network. Features
are then extracted from the hidden layers (the 6th and 7th

1184978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Fig. 1. Examples of gradient and optical flow im-
ages. Top: original image. Bottom-left: gradient image.
Bottom-right: optical flow image.

layers) and the output layer (the 8th layer). The features
extracted from the 6th, 7th, and 8th layers are 4,096, 4,096,
and 1,000 dimensions, respectively.

Next, SVMs are trained using the extracted feature vec-
tors. To reduce the computational cost and the toll on mem-
ory resources, we do not concatenate the feature vectors of
different layers. Rather, we create a separate SVM using fea-
tures from each layer.

Finally, all of the results are combined. This involves
simply adding the multiple scores from the SVMs to obtain
the final results.

4. PROPOSED METHOD

4.1. 1st effort: Using multiple evidences observed in
each video

Features can only be obtained from a single frame in a video.
However, the use of multiple frames can offer an improve-
ment to the performance, because different types of features
can be extracted from different angles of a detection target.
We first select at most N frames from a video at regular in-
tervals. After selecting these N frames, the corresponding N
images are inputted to the CNN to output the respective N
feature vectors. These N feature vectors are then bound to
one feature vector by element-wise max-pooling. That is, the
values of the elements in the same dimension are compared
across N sets, and the maximum value is selected. For exam-
ple, when extracting multiple features from the 6th layer of
the CNN, we can create one 4,096-dimensional feature vector
from multiple 4,096-dimensional vectors. This fixed-length
vector must include the information from multiple frames.
Max pooling is conducted because higher values are returned
when an input image has more distinctive features.

4.2. 2nd effort: Introducing gradient and motion fea-
tures to the CNNs

Using both CNN features and SIFT or dense trajectory fea-
tures and integrating them with the CNN method can boost

the performance of semantic video indexing [3, 4, 5, 6, 7].
This is because complementary features can be obtained us-
ing different feature extraction methods. However, after the
pooling stage (with bag-of-features (BoF) or Fisher vectors),
we are faced with very high-dimensional vectors. To avoid
this, we substitute SIFT or dense trajectory features with
CNN features.

SIFT and HOG are used to compute the edge gradient,
with which the object’s contour can be enhanced significantly.
To substitute edge features with CNN features, we apply a
Sobel filter to the images and create gradient images, as
shown in the bottom-left of Fig. 1. In these images, the
color corresponds to the orientation, and the brightness cor-
responds to the magnitude of the orientation gradients. We
then use these images to train a new CNN.

We also substitute motion features with CNN features.
When using dense trajectories, the optical flow is first cal-
culated, before pooling the features spatially and temporally.
Thus, we focused on creating optical flow images, as shown
in the bottom-right of Fig. 1, by calculating the optical flow
between two consecutive frames. In these images, the color
corresponds to the orientation of the optical flow, and the
brightness corresponds to the magnitude of the optical flow.
As before, these images are then used to train the new CNN.

4.3. 3rd effort: Enriching variations of the training
and the testing sets

Data augmentation is often used to train CNNs effectively
[10]. Therefore, to enrich variations of the training and the
testing sets, our approach utilizes flipped images, during both
the training and testing of the SVMs. In general, there are far
fewer positive samples than negative samples. Consequently,
we used the flipped images for the positive samples exclu-
sively. For testing, we simply inputted the flipped images
to the CNN in the same way that we inputted the original
images when extracting features from the hidden layers.

4.4. 4th effort: Utilizing CNNs pretrained with var-
ious kinds of data

Currently, many annotated images are well organized as a
result of the emergence of crowd-sourcing platforms. This
has helped in the creation of superior recognition models.
Other databases have also been developed. At Model Zoo
[16], for instance, several state-of-the-art pretrained CNNs
using the Caffe toolbox have been made publicly available.
Our proposed approach involves using multiple CNNs trained
with various large-scale datasets to extract complementary
features, in order to improve the performance of semantic
video indexing.

We experimented with two training methods for multiple
CNNs. The first method was to train a model using only
the target data (viz., the TRECVID videos). The second
involved using CNNs trained with other datasets. Because
the concepts we need to detect comprise not only objects,
but also scenes and events, we selected two types of so-called
Places-CNNs [13]: the Places205-AlexNet model, which was
trained on 205 scene categories with 2.5 million images; and
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Table 1. 30 concepts evaluated in the TRECVID 2014
SIN task.

Airplane Motorcycle
Basketball News_Studio
Beach Nighttime
Bicycling Running
Boat_Ship Singing
Bridges Stadium
Bus Telephones
Chair Baby
Cheering Flags
Classroom Forest
Computers George_Bush
Demonstration_Or_Protest Lakes
Hand Oceans
Highway Quadruped
Instrumental_Musician Skier

the Hybrid-AlexNet model, which was trained on 1,183 cat-
egories (205 scene categories and 978 object categories) with
3.6 million images.

5. EXPERIMENTS

5.1. Database

We evaluated the performance of the proposed approach on
the TRECVID video dataset from TRECVID’s 2014 SIN
task. The TRECVID dataset was collected from the Inter-
net Archive. Therefore, it contains a wide variety of objects,
scenes, and events. Videos typically consist of multiple shots
that are divided using automatic shot-boundary detection.
Labels are provided to some (but not all) of the shots with
collaborative annotation [14, 15]. The average length of each
video shot is approximately 5.4 seconds. The TRECVID 2014
dataset includes 106,913 testing shots and more than 500,000
training shots (approximately 800 hours of video).

5.2. Evaluation criteria

The purpose of the proposed approach is to detect specific
semantic concepts—e.g. objects, scenes, and events—in the
testing videos. We used the same evaluation criteria as the
TRECVID 2014 SIN task, namely by measuring the mean
extended inferred average precision (MAP). At TRECVID
2014, participants evaluated the entire testing set (106,913
shots), outputted their scores, and submitted lists of the top
2,000 shots corresponding to 60 concepts. Finally, 30 of these
60 concepts were evaluated, as shown in Table 1. For the eval-
uation, the top pool sampled 100% of the shots ranked 1–200
across all submissions, and the bottom pool randomly sam-
pled 11.1% of the shots ranked 201–2000. Human judges then
assessed these pools in order to generate a truth judgment. In
our experiments, this truth judgment was used to provide a
fair comparison of the performance of the respective methods.

5.3. Experimental conditions

Our implementation of the CNNs is based on the publicly
available Caffe toolbox [12]. To train the SVMs, we used

Table 2. MAP values for different CNN models
and their combinations with the TRECVID 2014 SIN
dataset.

Model ImageNet Gradient OpticalFlow MAPLayer 6 7 8 6 7 8 6 7 8
✓ 26.94

✓ 27.06
✓ 25.73

Single ✓ 23.00

classifier ✓ 23.17
✓ 21.74

✓ 15.07
✓ 14.76

✓ 13.12
✓ ✓ ✓ 28.49

Multiple ✓ ✓ ✓ ✓ ✓ ✓ 30.25
classifiers ✓ ✓ ✓ ✓ ✓ ✓ 30.11

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 30.97

approximately 30,000 shots for each concept, with roughly
the same number of positive and negative samples. Indeed,
there are an insufficient number of positive samples for most
concepts. Therefore, we used more negative samples, rather
than positive samples. Finally, after evaluating all of the
testing samples, we ranked the top 2,000 samples based on
their respective SVM scores.

5.4. Experimental results with regard to the 1st ef-
fort

To determine the effectiveness of using multiple frames, we
compared the performance between the use of a single frame
and the use of at most 10 frames. We extracted features from
the 6th, 7th, and 8th layers of a CNN trained with ImageNet.
With only a single frame, the MAP values were 20.83 (6th
layer), 20.10 (7th layer), and 19.41 (8th layer). With multiple
frames, by contrast, the MAP values were 26.94 (6th layer),
27.06 (7th layer), and 25.73 (8th layer). Thus, utilizing multi-
ple frames consistently improved the performance by at least
six MAP points.

5.5. Experimental results with regard to the 2nd ef-
fort

In order for the CNN to be inputted with both the gradient
images shown in the bottom-left of Fig. 1 and the optical
flow images shown in the bottom-right of Fig. 1, we newly
trained CNNs using gradient and optical flow images, respec-
tively. The network structure used was similar to the AlexNet
structure. In our network, however, the output layer con-
tained 346 units, such that it was equivalent to the number
of concepts in TRECVID. For the sake of clarity, the CNN
trained with the ImageNet dataset is written as ImageNet,
in bold Typewriter font. Likewise, the CNN trained with
the TRECVID gradient images is written Gradient, and the
CNN trained with the TRECVID gradient images is written
OpticalFlow.

Experimental results for ImageNet, Gradient, and
OpticalFlow are summarized in Table 2. The MAP values
for Gradient and OpticalFlow are not as high as the one for
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Table 3. MAP values for individual models with the TRECVID 2014 SIN dataset.
Model Layer Train: origignal images Train: original + flipped images

Test: original images Test: original images Test: flipped images
6 26.94 27.35 27.11

ImageNet 7 27.06 27.93 27.82
8 25.73 26.27 26.01
6 23.00 21.46 21.65

Gradient 7 23.17 22.25 23.12
8 21.74 21.06 21.99
6 15.07 15.37 15.41

OpticalFlow 7 14.76 15.10 15.13
8 13.12 13.43 13.56
6 27.24 27.73 27.44

Finetune 7 27.56 28.44 28.14
8 26.57 27.19 26.94

Places 6 27.80 27.89 27.84
7 26.90 27.51 27.68
6 29.51 29.14 28.98

Hybrid 7 29.19 29.44 29.35
8 27.91 27.90 27.84

ImageNet. However, from this experiment we can see that
the performance improves by the fusion of complementary
features, namely color, gradient, and motion features (see
Section 5.8 for details about the fusion method).

5.6. Experimental results with regard to the 3rd ef-
fort

We evaluated the effectiveness of utilizing flipped images by
analyzing features from the 6th layer of the ImageNet model.
We adapted this during both the training and the testing
phases. The performance after training the SVMs with only
the original images was compared with that from using both
the original and flipped images, resulting in MAP values of
26.94 and 27.35, respectively.

By contrast, when flipped images were used during the
testing phase, the MAP was 26.18 using the SVM trained
only with original images, and 27.11 using the SVM trained
with both original and flipped images.

After combining these four types of classifiers, we found
that the best MAP (27.99) was obtained by combining three
types of classifiers, except when original images were used
during the training phase and flipped images were used during
the testing phase. To reduce the computational expense, we
decided to perform calculations using only these three types
of classifiers for the other CNNs.

5.7. Experimental results with regard to the 4th ef-
fort

In order to obtain complementary features, we not only
extracted from the ImageNet, Gradient, and OpticalFlow
models, but also from other CNNs trained with different
large-scale image datasets. First, we created a new CNN
(Finetune) by fine-tuning the ImageNet model on TRECVID
data. This Finetune model was trained with 1 million im-
ages in 346 categories. These images were extracted from the
positive shots of TRECVID training videos.

Additionally, scene recognition is important for seman-
tic video indexing, because some concepts in the TRECVID
dataset are related to particular scenes (e.g., Beach, Night-
time, Stadium, etc). Therefore, as mentioned in the previous
section, we utilized two pretrained models provided at the
Model Zoo [16]: the Places205-AlexNet model (Places) and
the Hybrid-AlexNet model (Hybrid).

The MAP values for each individual model are shown in
Table 3.

5.8. Fusing all of the classifiers

Finally, we integrated all the classifiers shown in Table 3.
To do so, we calculated the total scores by simply summing
their weighted scores. We used a weight of 2 for ImageNet,
Finetune, Places, and Hybrid, and 1 for Gradient and
OpticalFlow, because the original images contain more in-
formation than gradient and optical flow features.

When combining all of the features, we achieved a MAP
of 35.69, which is significantly better than 33.2, achieved by
the winning team at TRECVID 2014. Finally, we submitted
our system to TRECVID 2015 SIN task. Our submission was
ranked second among all 29 teams.

6. SUMMARY AND FUTURE WORKS

In this paper, we showed that extracting the complementary
features from several CNNs is considerably effective for se-
mantic video indexing. Our proposed approach achieved a
state-of-the-art performance without needing to combine con-
ventional image classification methods (e.g., SIFT with BoF)
and motion features (e.g., the dense trajectory). In future
research, we shall study the use of other CNNs, especially
those with a very deep structure, and we shall train these
CNNs using large-scale datasets in order to improve their
performance.

Acknowledgements: This work was supported by JSPS
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