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ABSTRACT

Social media sharing platforms enable image content as well as con-
text information (e.g., user friendships, geo-tags assigned to images)
to be jointly analyzed in order to achieve accurate image annotation
or successful image recommendation. The context information is
expressed frequently in terms of high-order relations, such as the
relations among users, tags, and images. Hypergraphs can model
the aforementioned high-order relations between their vertices (i.e.,
users, user social groups, tags, geo-tags, and images) by hyper-
edges, whose influence can be assessed by properly estimating their
weights. Here, an efficient adaptive hypergraph weight estimation is
proposed for image tagging. In particular, both equality and inequal-
ity constraints enforced during hypergraph learning are taken into
account and an efficient adaptation step selection using the Armijo
rule is proposed. Experiments conducted on a dataset demonstrate
the superior performance of the proposed approach compared to the
state-of-the-art.

Index Terms— Image tagging, Hypergraph learning, Gradient
search algorithms.

1. INTRODUCTION

Popular social media sharing platforms, such as Flickr1, Picasa Web
Album2, or Instagram3, enable users to describe the content of im-
ages by tagging them. However, quite often, the tags provided by
the users are inaccurate or redundant. The aforementioned fact has
motivated research toward automated image tagging. Despite the
research effort made so far, achieving satisfactory efficiency and ac-
curacy still remain open issues.

In image tagging, the context information (e.g., user friendships,
geo-tags assigned to images) is of great importance and can be ex-
pressed in terms of high-order relations. For example, the relation
engaging a user, an image, and a tag is a third-order relationship.
Hypergraphs are suitable to model high-order relations between het-
erogeneous vertices, obtained by concatenating different kinds of ob-
jects (i.e., users, user social groups, tags, geo-tags, and images), with
hyperedges [1, 2]. The influence of each hyperedge can be assessed
by properly estimating its weight [3, 4]. The hypergraphs enjoy the-
oretical interest and find a wide range of applications in mathemat-
ics [5], databases, data mining, biology, complex network modeling,
multimedia search to mention a few [6].

Image tagging was treated in a “query and ranking” manner and
a graph-based reinforcement algorithm for interrelated multi-type
objects was proposed in [7]. A random walk model was proposed

1http://www.flickr.com
2http://picasaweb.google.com
3http://instagram.com

in [8], employing a fusion parameter to regularize the influence be-
tween the visual and textual information. In [9], image tagging was
addressed within a hypergraph ranking canvas by enforcing group
sparsity constraints. Multi-label image annotation was formulated as
a regression model with a regularized penalty, exploiting the struc-
tural group sparsity in [10]. Hypergraph learning was also applied to
social image search [11, 12].

Here, an efficient adaptive hypergraph weight estimation scheme
is proposed for image tagging, extending the previous work [4]. The
novelty of this paper is in the incorporation of equality and inequality
constraints within the optimization problem related to hypergraph
learning and the derivation of a gradient search method for its so-
lution from first principles. In addition, an efficient adaptation step
selection is proposed, using the Armijo rule. Experiments conducted
on a dataset of images related to popular Greek landmarks demon-
strate the superior performance of the proposed approach compared
to the state-of-the-art.

The outline of the paper is as follows. In Section 2, the gen-
eral hypergraph model is introduced and the ranking on a hyper-
graph is briefly addressed. The adaptive hyperedge weight estima-
tion is detailed in Section 3. In Section 4, the dataset is described
and the hypergraph construction is explained. Experimental results
are presented in Section 5, demonstrating the merits of the proposed
method. Conclusions are drawn in Section 6.

2. HYPERGRAPH MODEL

In the following, | · | denotes set cardinality, ‖.‖ is the �2 norm of
a vector, and I is the identity matrix of compatible dimensions. Let
G(V,E,w) denote a hypergraph with set of vertices V and set of
hyperedges E to which a real weight function w is assigned. The
vertex set V is made by concatenating sets of objects of different
type (users, social groups, geo-tags, tags, images). These vertices
and hyperedges form a |V | × |E| incidence matrix H with ele-
ments H(v, e) = 1 if v ∈ e and 0 otherwise. The vertex and hy-
peredge degrees are obtained by δ(v) =

∑
e∈E w(e)H(v, e) and

δ(e) =
∑

v∈V H(v, e), respectively. The following diagonal matri-
ces are defined: the vertex degree matrix Dv of size |V | × |V |, the
hyperedge degree matrix De of size |E| × |E|, and the |E| × |E|
matrix W containing the hyperedge weights.

Let A = D
−1/2
v HWD−1

e HTD
−1/2
v . A is a symmetric ma-

trix, as the diagonal matrices W and D−1
e commute in multiplica-

tion. Then, L = I−A is known as Zhou’s normalized Laplacian of
the hypergraph [13]. The elements of A, A(j, i), indicate the relat-
edness between the vertices j and i. To perform clustering on a hy-
pergraph, one is seeking for a real-valued ranking vector f ∈ R

|V |,
minimizing the cost function Ω(f) = fTLf . That is, one requires
all vertices with the same value in the ranking vector f to be strongly
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Fig. 1. Description of the hyperedge weight learning method.

connected [14]. For instance, two images are probably similar, if
they are linked with many common tags.

The just described optimization problem was extended to a rank-
ing problem by including the �2 regularization norm between the
ranking vector f and a query vector y ∈ R

|V | [15, 16] This guaran-
tees that the ranking vector does not differ too much from the initial
query. The function to be minimized is then expressed as

Ψ(f) = Ω(f) + ϑ ||f − y||2 (1)

where ϑ is a positive regularizing parameter. The best ranking vec-
tor, f∗ = argminf Ψ(f), is found to be [15, 16]:

f∗ =
ϑ

1 + ϑ

(
I− 1

1 + ϑ
A
)−1

y. (2)

Image tagging can be cast as a ranking problem [4].

3. ADAPTIVE HYPEREDGE WEIGHT UPDATING

Let n = |E| and w = (w1, w2, · · · , wn)
T be formed by the el-

ements lying in the main diagonal of W. In addition to enforcing
the inequality constraint 1T

nw = 1 as in [4], we also require wi,
i = 1, 2, . . . , n, to be non-negative. The latter inequality constraints
are collectively referred to as w ≥ 0. That is, the following mini-
mization problem is defined:

argmin
f,w

{
Ψ(f) + +κ||w||2} s.t. 1T

nw = 1 and w ≥ 0 (3)

where κ is a positive regularization parameter. The minimization
problem (3) is solved in alternating fashion, as is illustrated in Fig. 1.
Obviously, when w is fixed, the solution for f is given by (2). There-
fore, we shall elaborate on the solution for w, when f is fixed. Let
P (w) = fTLf + κ||w||2. In this case, the optimization w.r.t. w is
read as:

argmin
w

P (w) s.t. 1T
nw = 1 and w ≥ 0. (4)

The new optimization problem (4) is solved by employing gradient
descent. By omitting the dependence on w for notation simplicity,
the Lagrangian of the optimization problem is given by

Q = P +

℘∑
j=1

cj Gj , (5)

where cj , j = 1, 2, . . . , ℘ are the Lagrange multipliers associated to
the ℘ active constraints Gj defined as

Gj :

{
1T
n w − 1 = 0 for j = 1

wνj−1 = 0 for j > 1.
(6)

That is, the first constraint G1 is the equality constraint, which is
always active. For the remaining active constraints (i.e., for j > 1),

we have 2 ≤ νj ≤ n + 1, such that νj − 1 ∈ [1, n] is an index
of a hyperedge weight. The Kuhn-Tucker theorem [17] requires the
Lagrange multipliers to be determined by demanding that ∇Q to be
orthogonal to ∇Gj =

∂Gj

∂w
, i.e.,

∇GT
j ∇Q = 0, j = 1, 2, . . . , ℘ (7)

It can be shown that:

∇Q = ∇P +

℘∑
j=1

cj ∇Gj = ∇P + Γ c (8)

where c ∈ R
℘ and Γ is a matrix of size n × ℘ having a special

structure. In particular, its first column is 1n, while the remaining
columns have 1 at the row νj−1 and zero otherwise. Its j-th column
is simply ∇Gj , i.e. Γ = [∇G1|∇G2| · · · |∇G℘]. Accordingly, the
system of equations (7) can be rewritten as:

ΓT ∇Q = ΓT (∇P + Γc) = 0 ⇔ c = −(ΓTΓ)−1ΓT∇P, (9)

yielding a closed-form expression for c that can be further simpli-
fied. Let

Sinactive =
n∑

i=1
wi �=0

(∇P )i, (10)

where (∇P )i denotes the i-th element of ∇P . By exploiting the
structure of Γ, it can be found that

c =

⎡
⎢⎢⎢⎢⎣

−Sinactive
n−℘+1

Sinactive
n−℘+1

− (∇P )ν2−1

...
Sinactive
n−℘+1

− (∇P )ν℘−1

⎤
⎥⎥⎥⎥⎦ . (11)

Substituting (11) in (8), we obtain the i-th element of ∇Q, i.e.,

(∇Q)i =

{
0 i : wi = 0

(∇P )i − Sinactive
n−℘+1

otherwise, (12)

where (∇P )i is given by [4]:

(∇P )i = −fT
(
D−1

e (i, i)ΛiΛi
T −Ξi

)
f + 2κwi. (13)

In (13), Λi ∈ R|V | is the i-th column of Λ = D
−1/2
v H and

Ξi = diag(Λi)D
−1/2
v A. Observe that Ξi is a symmetric matrix

and diag(Λi) is a |V | × |V | diagonal matrix having Λi in its main
diagonal.

The gradient descent requires wnew = wold −µ∇Q. That is, if
wold

i was active (i.e., wold
i = 0), then wnew

i = 0. Otherwise,

wnew
i = wold

i − µ(∇P )i + µ
Sinactive

n− ℘+ 1
. (14)

Algorithm 1 summarizes the adaptive weight estimation.
In (14), an arbitrary fixed small adaptation step µ is used as in

the classical gradient descent [17]. In order to achieve a sufficient
decrease in the objective function between successive iterations and
speed up in this way the convergence of the algorithm, the Armijo
rule [18] is employed to properly select the adaptation step µ. The
Armijo rule states that for sufficiently decreasing the objective func-
tion at iteration k

Q(w(k)) = fTLf + κ||w(k)||2 +

℘∑
j=1

cj Gj (15)

1180



Algorithm 1 Image tagging via hyperedge weight learning with gra-
dient descent
Inputs: The objects (i.e., users, groups, tags, geo-tags and images)
and their relations. Set the regularization parameters ϑ and κ.
Output: Optimized weights w and the ranking vector f .

1 Form matrices H,De,Dv , and W, having initialized the hy-
peredge weights wi.

2 Compute the affinity matrix A = D
−1/2
v HWD−1

e HT

D
−1/2
v ∈ R

|V |×|V |. Set the query vector y ∈ R
|V |.

3 Find result ranking vector f ∈ R
|V |, using (2).

4 Compute the gradient ∇P (w) with elements as in (13).

5 Update the non-zero weights, using (14). If a weight becomes
zero, it remains zero for ever.

6 Having found the new hyperedge weights update A, Dv , and
W.

7 Repeat the steps 2 - 6 until convergence. Find the final rank-
ing vector f .

the adaptation step can be updated as µk = � µk−1, for � ∈ (0, 1]
until the condition

Q(w(k) + µk dk) ≤ Q(w(k)) + η1 µk∇QT (w(k)) d(k) (16)

is fulfilled for some η1 ∈ (0, 1) (e.g., η1 = 10−4) with d(k) =
−∇Q(w(k)) being the search direction in the steepest descent
method [18].

4. DATASET DESCRIPTION AND HYPERGRAPH
CONSTRUCTION

The image dataset used in [4] is exploited here as well. The dataset
was collected from Flickr. It contains both indoor and outdoor
medium sized photos of popular Greek landmarks, including city
scenes and landscapes. Using Flickr API4, a large set of “geotagged”
images was downloaded along with valuable information related to
them (id, title, owner, latitude, longitude, tags, image views). Then,
the dataset was filtered based on image views (i.e., the times that
the specific image has been seen in F lickr) and owner’s uploading
statistics. At this point, it was assumed that images with many views
normally depict worth seeing landmarks and owners (users) with
many uploaded images were active ones, possessing many social re-
lations (friends, social groups). The image owners were the users in
the dataset. Then, corresponding social information (friends, social
groups) was crawled and only the groups that had at least 5 owners
from the dataset as members were kept. The specific cardinalities
are summarized in Table 1.

In order to form a proper set of tags, all characters were con-
verted to lower case, unreadable symbols and redundant information
were removed. Next, a vocabulary of unique words was generated
along with their frequencies. Terms with frequency less than 2 oc-
currences were removed from the set of tags and the vocabulary. Fi-
nally, spelling mistakes were corrected and any morphological vari-
ations merged using the Edit Distance [19].

Having computed pairwise distances according to the “Haver-
sine formula”5, geo-tags were clustered into 125 distinct clusters us-

4http://www.flickr.com/services/api
5http://www.movable-type.co.uk/scripts/latlong.

html

Table 1. Dataset objects, notations, and counts.
Object Notation Count
Images Im 1292
Users U 440
User Groups Gr 1644
Geo-tags Geo 125
Tags Ta 2366

ing hierarchical clustering.
The hypergraph structure is displayed in Table 2. The vertex set

is defined as V = Im∪U ∪Gr ∪Geo∪Ta. The incidence matrix
of the hypergraph H has size 5867 × 30924 elements. The dataset
has captured 2276 friendship relations and 19127 tagging ones.

E(1) represents a pairwise friendship relation between users.
The incidence matrix of the hypergraph UE(1) has size 440× 2276
elements.

E(2) represents a user group. It contains all the vertices of the
corresponding users as well as the ones corresponding to the user
group. The incidence matrix of the hypergraph UE(2) − GrE(2)

has size (440 + 1644) × 1644 elements.
E(3) contains a user and an uploaded image, representing a user-

image possession relation. Each image has only one owner. The
incidence matrix of the hypergraph UE(3)−ImE(3) has size (440+
1292) × 1292 elements.

E(4) captures a geo-location relation. This hyperedge set con-
tains triplets6 of Im, U , and Geo. The incidence matrix of the hy-
pergraph ImE(4) − UE(4) − GeoE(4) has size (1292 + 440 +
125) × 125 elements.

E(5) also contains triplets, Im, U , and Ta. Each hyperedge rep-
resents a tagging relation. The incidence matrix of the hypergraph
ImE(5)−UE(5)−TaE(5) has size (1292+440+2366)×19127
elements.

E(6) contains pairs of vertices, which represent two images.
Both global and local features were used to determine visual rela-
tions between images. Firstly, the 100 nearest neighbors to each
image were identified using the GIST descriptors [20] and they were
reduced to the 5 most similar images to the reference image, by using
scale-invariant feature transform (SIFT) [21]. The incidence matrix
of the hypergraph ImE(6) has size 1292 × 6460.

The query vector y is initialized by setting the entry correspond-
ing to the test image im and its owner o to 1. The tags ta connected
to this image are set equal to A(im, ta). The objects correspond-
ing to gr and geo associated to the image owner o are set equal
to A(o, gr) and A(o, geo), respectively. The query vector y has a
length of 5867 elements. During testing, the tags contained in the
test set were not included in the training procedure.

The ranking vector f∗ has the same size and structure as y. The
values corresponding to tags are used for image tagging with the top
ranked tags being recommended for the test image.

5. EXPERIMENTS

The averaged Recall-Precision and the F1 measure are used as fig-
ures of merit. Precision is defined as the number of correctly recom-
mended tags divided by the number of all recommended tags. Recall
is defined as the number of correctly recommended tags divided by
the number of all tags the user has actually set. The F1 measure

6A hypergraph is needed, indeed.
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Table 2. The structure of the hypergraph incidence matrix H and its
sub-matrices.

E(1) E(2) E(3) E(4) E(5) E(6)

0 0 ImE(3) ImE(4) ImE(5) ImE(6)

UE(1) UE(2) UE(3) UE(4) UE(5) 0
0 GrE(2) 0 0 0 0
0 0 0 GeoE(4) 0 0

0 0 0 0 TaE(5) 0

is the weighted harmonic mean of precision and recall, which mea-
sures the effectiveness of tagging when treating precision and recall
as equally important, i.e., F1 = 2 Precision·Recall

Precision+Recall
. The F1 measure

is also measured at several ranking positions.
Let us refer to the ranking obtained by the proposed adaptive

weight estimation method with steepest descent as ITH-HWEG
when a fixed adaptation step is used and ITH-HWEA when the
Armijo rule is employed. The method proposed in [4] is referred to
as ITH-HWE and the ranking obtained by (2) is denoted as ITH. In
the aforementioned acronyms, ITH stands for Imaging Tagging on
Hypergraph, HWE reads as Hypergraph Weight Estimation, and the
final G and A signals whether a fixed step size or the Armijo rule
has been used in the proposed steepest descent algorithm.
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Fig. 2. Averaged Recall-Precision curves for all methods with initial
hyperedge weights 1

n
.

For evaluation purposes, a test set containing the 25% of the tags
and a training set containing the remaining 75% are defined. The re-
sults of the image tagging are demonstrated in Fig. 2, in which the
averaged Recall-Precision curves are plotted when the initial hyper-
graph weights are initialized as 1

n
. These curves were obtained by

averaging the Recall-Precision curves over 1186 images with at least
4 tags. To calculate the recall and precision, the 15 top ranked tags
are being recommended to any test image. It is seen that the pro-
posed method ITH-HWEA outperforms all the methods it is com-
pared to, validating its effectiveness for hyperedge weight learning.
The ITH-HWEG that employs a fixed adaptation does not yield a
performance improvement. The F1 measure at various ranking posi-
tions is summarized in Table 3.

Experiments were also conducted with random initial hyperedge
weights. The averaged Recall-Precision curves are plotted in Fig. 3.
It is seen that both methods ITH-HWEG and ITH-HWEA outper-
form the baseline techniques ITH-HWE [4] and ITH [16].

Table 3. F1 measure at various ranking positions for the compared
methods when the hyperedge weights are initialized as 1

n
.

Initial weight set
to w(0) = 1

n
1n

F1@1 F1@2 F1@5 F1@10

ITH [16] 0.307 0.444 0.520 0.440
ITH-HWE[4] 0.349 0.556 0.675 0.517
ITH-HWEG 0.317 0.458 0.541 0.445
ITH-HWEA 0.420 0.676 0.720 0.560

Table 4. F1 measure for ITH-HWEG and ITH-HWEA.

Random initial
weights

F1@1 F1@2 F1@5 F1@10

ITH-HWEG 0.425 0.682 0.753 0.558
ITH-HWEA 0.431 0.695 0.760 0.560
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Fig. 3. Averaged Recall-Precision curves for all methods when the
initial hyperedge weights are randomly initialized.

The F1 measure at ranking positions 1, 2, 5, and 10 for ITH-
HWEG and ITH-HWEA is listed in Table 4.

The experimental findings indicate that the initialization of the
hyperedge weights affects the image tagging efficiency. The use of
random hyperedge weight initialization combined with the Armijo
rule for step size selection is highly recommended, as it guarantees
the best performance.

6. CONCLUSIONS AND FUTURE WORK

In this paper, efficient adaptive hyperedge weight learning algo-
rithms have been proposed for image tagging. The experiments
conducted on a collection of images related to Greek sites have
demonstrated the superiority of the proposed algorithms. The in-
cremental update of an already trained hypergraph learning model
could be a topic of future research.
Acknowledgments. This research has been co-financed by the Eu-
ropean Union (European Regional Development Fund - ERDF) and
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