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ABSTRACT

Low-rank matrix factorization serves as a key technique in
learning latent factor models for many applications in ma-
chine learning. However, in many applications, observed data
often exhibits different levels of noise. To address this is-
sue, we propose a Robust Probabilistic Discriminative Matrix
Factorization (RPDMF) method for binary matrix factoriza-
tion on noise polluted data. We illustrate the benefits of our
approach in real examples, and show how our method signif-
icantly outperforms Probabilistic Discriminative Matrix Fac-
torization (PDMF) and classical method Weighted Nonnega-
tive Matrix Factorization (WNMF) in the application of image
tag completion.

Index Terms— Matrix factorization, image tag comple-
tion, data recovery, binary matrix

1. INTRODUCTION

Low-rank matrix factorization serves as a key technique in
learning latent factor models for many applications. Most ma-
trix factorization methods seek to represent the original ma-
trix as the product of two low-rank matrices. Typical appli-
cations of matrix factorization include image annotation [1],
image tag completion [2, 3, 4], collaborative prediction [5]
and clustering [6]. For any specific real application [7, 8], the
corresponding optimality criterion is defined so that the dif-
ference between the original matrix and its factorized form
is expected to be minimized. Matrix factorization serves as
a very effective method to address problems of missing data
recovery and prediction. Because matrix factorization can re-
cover missing data without help of extra features, it can be ap-
plied to different fields without designing new features which
may require domain-specific knowledge.

Among all collaborative filtering problems [9, 10, 11], im-
age tag completion is a very typical application in matrix fac-
torization. Different from movie ratings and recommenda-
tions [12, 13], the matrix representation of image tag contains
only binary elements. A positive sample in the matrix means
that a certain tag data is associated with a given image, while
a negative sample means that the information described by
this tag has not been assigned to the given image.

Many methods [14, 15, 16] have been proposed for matrix
factorization. However, these methods assume that the ob-
served matrix is noise-free. Besides, the data in typical matrix
factorization with missing elements can take on any arbitrary
real value. The factorization is performed so that an objec-
tive function is minimized. The objective function is usually
composed of the observed data in the original matrix and a
regularizer that controls the model complexity. Some factor-
ization methods are performed under certain restrictions. For
example, Nonnegative Matrix Factorization (NMF) [14, 17],
as suggested by its name, requires that all elements of the o-
riginal matrix be nonnegative.

In this paper, motivated by the image tag completion task,
we discuss a specific setting of matrix factorization with en-
tries restricted to binaries, representing positive and negative
samples respectively. Also in this setting, some observed el-
ements are polluted by noise. In order to perform the data
recovery, we mask some of the elements in the original ma-
trix as unknown. An example of observed matrix is ? ns ps ps

ps ? ps ns

ns ps ? ns


,

where ps represents a positive sample, ns is a negative
sample, and the ‘?’ represents our masked missing data. We
should notice that some of the elements with value ps or ns

are mislabelled (flipped) in the observed matrix due to the
noise. As we discussed previously, image tag completion falls
exactly into this category. Given the original matrix represen-
tation X of an image set Xij = ps means that the ith image
has the tag indexed as j, while Xij = ns means that the ith
image does not include the information of tag j. We may lose
some tags because the user input is not trusted, or because
the information conveyed by a certain tag is difficult to distin-
guish in a given image. Those tags are represented by ‘?’ in
the matrix. And the noise (mislabelling) may be introduced
during transmission or by human error.

We propose Robust Probabilistic Discriminative Matrix
Factorization (RPDMF) in order to recover those missing el-
ements which are labeled as ‘?’ in the noisy binary matrix,
i.e., to predict whether any missing element is either ps or ns.
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Another method proposed specifically to deal with missing
data in a matrix is Weighted Nonnegative Matrix Factoriza-
tion (WNMF) [18], which excludes missing data in the cost
function by introducing a masking matrix as part of the opti-
mization.

2. ROBUST PROBABILITY DISCRIMINATIVE
MATRIX FACTORIZATION

Given a matrix X ∈ Sm×n, S = {ps, ns} with missing val-
ues, let G denote the set of observed elements in the matrix
X . All these observed entries are either 1 or −1, i.e., ps = 1,
ns = −1. All the missing elements are denoted as 0. Given
the observed set G, our goal is to predict weather Xij = 1 or
−1 for all Xij ̸∈ G.

We need to find a low-rank matrix X̂ = Ŵ × ĤT to
approximate the target matrix X . We obtain X̂ by minimizing
a linear combination of the norms of W and H , which are two
regularizers intended, respectively, to avoid overfitting, and to
control its logistic loss:

min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

log(1 + e−Xi,j⟨Wi., Hj.⟩)

+ α∥W∥2F + β∥H∥2F .
(1)

Here α and β are parameters controlling the strength of
regularizers for W and H . In our case, α = β since they are
of equal importance. Since the logistic loss has probabilistic
interpretation [19], we call this Probabilistic Discriminative
Matrix Factorization (PDMF).

In real-world applications, the training data X may be
polluted by noise. To handle the noise, we propose a robust
version of PDMF that is called Robust Probabilistic Discrim-
inative Matrix Factorization (RPDMF). For any Xi,j , we in-
troduce a random variable Ii,j where Ii,j = 1, if Xi,j is not
polluted; and Ii,j = 0, otherwise.

min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

Ii,j log(1 + e−Xi,j⟨Wi., Hj.⟩)

+ α∥W∥2F + β∥H∥2F − q
∑

(i,j)∈G

Ii,j .
(2)

Here, q is parameter that controls the noise level; and C is
the box constraint.

2.1. Optimization

We now discuss the optimization shown in (2) with respect to
W ∈ Rm×p, H ∈ Rp×n and {Ii,j |(i, j) ∈ G}. Joint opti-
mization with respect to W , H , and {Ii,j |(i, j) ∈ G} is very
difficult due to nonconvexity of the cost function. However, if
we optimize only one of W , H , or {Ii,j |(i, j) ∈ G} at a time,
the problem becomes easy to solve. So we propose an alter-
nate optimization method by repeating following three steps
until convergence is reached.

Note that PDMF is a special case RPDMF, when all Ii,j
are set to 1 for (i, j) ∈ G.

Step 1: Fix H and {Ii,j |(i, j) ∈ G}, optimize W . Opti-
mize (2) with respect to W .

W ∗ =arg min
W∈Rm×p, H∈Rn×p

C
∑

(i,j)∈G

Ii,j log(1 + e−Xi,j⟨Wi., Hj.⟩)

+ α∥W∥2F + β∥H∥2F − q
∑

(i,j)∈G

Ii,j

=arg min
W∈Rm×p, H∈Rn×p

∑
(i,j)∈G

Ii,j log(1 + e−Xi,j⟨Wi., Hj.⟩)

+ α∥W∥2F .
(3)

We can further decompose the problem in (3) into a set of in-
dependent subproblems, where each subproblem is optimiza-
tion over a row of W . If we assume that we need to optimize
with respect to i-th row of W denoted as Wi.

W ∗
i. =arg min

Wi.∈Rp

1

2
∥Wi.∥2F + C

∑
(i,j)∈G

Ii,j log(1 + e−Xi,j⟨Wi., Hj.⟩).

(4)

Then the problem above become a standard convex opti-
mization problem which can be easily solved by any gradient
method.

Step2: Fix W and {Ii,j |(i, j) ∈ G}, optimize H . Sym-
metrically, we optimize respect to each row of H in the same
manner.

Step 3: Fix W and H , optimize {Ii,j |(i, j) ∈ G}.
This problem can be decomposed into a set of indepen-

dent problems, each of which responds to Ii,j :

I∗i,j =argmin
Ii,j

CIi,j log(1 + e−Xi,j⟨Wi.,Hj.⟩)

+ α∥W∥2F + β∥H∥2F − qIi,j

=argmin
Ii,j

CIi,j log(1 + e−Xi,j⟨Wi.,Hj.⟩)− qIi,j .

(5)

Then the optimization can be easily done by setting Ii,j
to 1 if log(1 + e−Xi,j⟨Wi.,Hj.⟩) < q/C; and setting Ii,j to 0
otherwise.

We summarize these three steps in the Algorithm 1. Over-
all, in every iteration, we first fix H , I and update all rows of
W . Then we fix W , I and update all rows of H . Finally, we
fix W , H and update I . In each step, a convex optimization
problem is solved by a gradient-descent method. Since dif-
ferent rows of W or H can be updated independently given
fixed H or W , respectively, the optimization methods can be
easily run in parallel to speed up computation.

Our proposed algorithm is guaranteed to converge, since
the objective function is lower bounded by zero, and each of
the updating steps can only decrease the objective function,
or leave it unchanged.

1171



Algorithm 1 One-Class Maximum Margin Matrix Factoriza-
tion
Require: X ∈ {1,−1}m×n with G, the set of observed en-

tries; p, the dimension of the latent space.
1: Initialize W ∈ Rm×p, H ∈ Rn×p

2: for t = 1,...,max iter do
3: for i = 1,..., m do
4: Update Wi..
5: end for
6: for i = 1,..., n do
7: Update Hi..
8: end for
9: for i, j ∈ G do

10: Update Ii,j .
11: end for
12: end for
13: return W, H

3. EXPERIMENTAL RESULTS

In order to evaluate our proposed RPDMF method, we first
conduct an experiment on a synthetic dataset. Then we apply
PDMF to the task of image tag completion. The two public
datasets used for performing image tag completion are NUS-
WIDE TAGGED [20] and MIRFLICKR-25K [21].

To create the synthetic dataset, we first generate two base
matrices W ′ = (w′

ij)m×p and H ′ = (h′
ij)n×p, where the ele-

ments of W ′ and H ′ are uniformly distributed w′
ij ∼ U [0, 1],

h′
ij ∼ U [0, 1]. Then we threshold the matrix X ′ = W ′ ×

(H ′)T to obtain the binary matrix X so that approximately
50% of elements in X are positive samples while the rest are
negative samples.

The NUS-WIDE TAGGED dataset includes 269, 648 im-
ages and 81 associated tags (e.g airport, animal, beach, bear,
etc.). So the original X ′ is a 269, 648 × 81 matrix in which
each row represents a tagged image, while each column repre-
sents a possible tag. If the ith image has a specific tag j, then
the X ′(i, j) should be a positive sample. However, many im-
ages in this dataset have a small number of tags. Thus they
provide little information about statistical correlations among
different tags. So we apply preprocessing to this dataset to ex-
clude those images that have fewer than 10 tags. Because of
this preprocessing, the matrix X = (xij)m×n to be factorized
has much fewer rows than the original matrix X ′.

Similarly, MIRFLICKR-25K contains 25, 000 tagged
images with 38 different tags. We generate a matrix repre-
sentation to this dataset as described above. Again, we apply
preprocessing to this datasets to exclude the images which
provide insufficient tag information. On MIRFLICKR-25K,
we only use images that have more than 12 tags. The dimen-
sionality of matrix representation (after preprocessing) for
these three datasets is give in Table 1.

We compare RPDMF with the competing methods PDMF

Table 1: Dimensionality of the three datasets

Dataset m n p
Synthetic 100 100 40

NUS WIDE TAGGED 89 81 40
MIRFLICKR-25K 104 38 20

and weighted nonnegative matrix factorization (WNMF).
Now we discuss the parameters and performance mea-

sures for these three methods. On all three datasets, we label
the positive samples in X as 1. However, due to the different
nature of WNMF, PDMF, and RPDMF, we need to label neg-
ative samples in X differently depending on which method is
applied. For WNMF, we label negative samples as 0, since
Xij should be nonnegative value. For PDMF and RPDMF,
we should label negative samples as −1. After that, we ran-
domly mask 20% of elements in X , and use them as the test-
ing set while the rest are used as the training set. For PDMF
and RPDMF, the masked elements are labeled as 0. These are
expected to be recovered. For WNMF, we can achieve mask-
ing by specifying the weight matrix M in the objective cost
function:

Ownmf = ||M ⊙ (X −WH)||F2 , (6)

where mij = 0 if this element is masked for testing, while
mij = 1 if it is in the training set. In order to test the robust-
ness of these three methods, we randomly flip a portion of σ
elements in the training set. This process introduces noise in-
to our training set as discussed in Sec. 2. A larger value of σ
means that the training data is more heavily polluted.

For faster convergence of RPDMF, we initialize W 0 =
(w0

ij)m×p, H0 = (h0
ij)n×p as w0

ij ∼ N(0, 1), h0
ij ∼ N(0, 1),

and Iij = 1. On all the datasets, our experiments suggest that
30 iterations are sufficient for RPDMF to reach convergence.
In every iteration k, we sequentially optimize all rows of W k

followed by all rows of Hk, and finally I . To update each
row W k

i. , all the rows of Hk which correspond to non-zero
entries in X are viewed as samples. And we update each row
Hk

j. symmetrically. We use BFGS Quasi-Newton approach
[22] in every iteration to update from W k, Hk to W k+1,
Hk+1. Our experiment show that BFGS has the fastest con-
vergence compared to other gradient methods such as DFP
or Conjugate Gradient [22]. After 30 iterations, we calculate
X̂ ′ = W 30 × (H30)T . For the WNMF method, we simply
update W k and Hk in very iteration as in [18]. Our experi-
ments suggest that 40 iterations are sufficient for WNMF to
reach convergence. So X̂ ′ = W 40 × (H40)T for WNMF. For
all the three methods, X̂ ′ is binarized at threshold value T to
obtain the recovered binary matrix X̂ . Finally, we evaluate
the performance of factorization in the testing set, which are
those masked elements that we choose at the beginning.

For both PDMF and RPDMF, different values for box
constraint C and threshold T will generate different estimates
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(c) MIRFLICKR-25K

Fig. 1: Testing results on three datasets for three methods, as a function of noise level

Table 2: mFmax
1 scores on three datasets for RPDMF, PDMF, and WNMF

Dataset Synthetic NUS-WIDE TAGGED MIRFLICKR-25K
σ WNMF PDMF RPDMF WNMF PDMF RPDMF WNMF PDMF RPDMF

0.1 0.7807 0.8688 0.8761 0.4760 0.7493 0.7544 0.6696 0.7987 0.7990
0.2 0.7421 0.8563 0.8602 0.3649 0.6654 0.6743 0.6039 0.7290 0.7655
0.3 0.6682 0.8208 0.8201 0.2936 0.6067 0.6672 0.5725 0.7171 0.7301
0.4 0.6686 0.6925 0.7481 0.2804 0.5623 0.5962 0.5544 0.6081 0.6190
0.5 0.6494 0.6487 0.7121 0.2761 0.3902 0.4442 0.5510 0.5604 0.5847

X̂ . We perform an exhaustive search on C and T to find the
best combination (C∗, T ∗) that can maximize the F1 score in
the testing set. For WNMF, we only need to search for the
optimal T ∗ that leads to the maximum F1 score in the test-
ing set. Because of the randomness in initialization and opti-
mization, we repeat the whole factorization process five times
for each method, at every level of σ, to obtain five maximum
F1 scores. For every σ, we calculate its corresponding mean
maximum F1 score mFmax

1 for all three methods. The test-
ing results on three datasets at different noise levels σ = 0.1,
0.2, 0.3, 0.35, 0.4 are given in Table 2. As a visualization of
Table 2, we also present our testing results in Fig. 1.

According to Table. 2 and Fig. 1, we can conclude that R-
PDMF achieves the highest mFmax

1 score when compared to
WNMF and PDMF on all three datasets in very case but one.
Even for that particular case, its score is very close to that of
the best result. Our method significantly outperforms WNMF
in terms of mFmax

1 score on all three datasets. We can al-
so see that the performance of PDMF degrades more rapidly
compared to RPDMF, as we increase the number of polluted
(flipped) elements. This points to the robustness of our algo-
rithm. In Fig. 1, we see that the mFmax

1 scores of RPDMF
drop faster in the tails compared to WNMF as σ increases,
primarily because the performance of WNMF is already at a
very low level. Since our original matrix is binary, it should
be noted that any result close to P (Xij = ps) means that the
factorization provides little practical value. That is because
the probability of a random guess for any element in this ma-

trix should be P (Xij = ps).
However, RPDMF is more computationally expensive

compared to WNMF and PDMF, according to our experi-
ment. Even though we avoid joint optimization and apply the
Quasi-Newton approach BFGS, we still need to do intensive
convex optimization in every iteration when updating W k

i. or
Hk

j. based on ‘samples’ in the other matrix. So the compu-
tational complexity of RPDMF grows exponentially with the
size of the original matrix X . In contrast, WNMF utilizes
simple gradient-based method to reach convergence for both
W k and Hk. In every iteration of WNMF, W k and Hk up-
date once respectively, and the updates involve only simple
matrix multiplication. In terms of computational complexity,
RPDMF is almost equivalent to multiple (≈ 10) iterations of
PDMF, because we need to tune one more parameter q in (2).

4. CONCLUSION

In this paper, we presented a new method RPDMF, which can
be used to recover missing data in a noisy binary matrix. This
method is motivated by the real-word application: image tag
completion. In RPDMF, we introduce the logistic loss into
the cost function and optimize two base matrices W and H
alternately to reach convergence. We evaluate RPDMF on
three datasets, and compare it with the competing methods
WNMF and PDMF. According to our experiment, we see that
RPDMF has a significant advantage over WNMF and PDMF
in terms of the F1 measure when dealing with noisy matrices.
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