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ABSTRACT
Instead of lossily coding depth images resulting in undesir-
able geometric distortion, graph-based representation (GBR)
describes disparity information as a graph with a controllable
accuracy. In this paper, we propose a more compact graph-
ical representation called GBR-plus to code both disparity
and color information of a target view given a reference view.
Specifically, first we differentiate between disocclusion holes
(occluded spatial regions in the reference view) and rounding
holes (insufficiently sampled regions in the reference view) in
the synthesized target view, so that the decoder can option-
ally complete rounding holes via signal interpolation without
coding overhead. Second, we use a compact graphical repre-
sentation to delimit disparity-shifted boundaries of objects in
the target view, which is coded losslessly. Finally, color pixels
in disocclusion holes are predicted using adjacent background
pixels as predictors, and prediction residuals in a local neigh-
borhood are coded using Graph Fourier Transform (GFT).
Experimental results show that GBR-plus outperforms previ-
ous GBR, and has comparable performance as HEVC at mid
to high bitrates with lower encoder complexity.

Index Terms— 3D imaging, graphical representation,
graph Fourier transform

1. INTRODUCTION

In a typical multiview imaging system [1], a 1D array of
closely spaced cameras capture both color and depth images
of a 3D scene from different viewpoints, which are then coded
and transmitted to the decoder for rendering of additional in-
termediate virtual views via depth-image-based rendering
(DIBR) [2]. Coding depth images—which convey important
disparity information—using conventional transform coding
plus lossy quantization [3–6] leads to uncontrolled geomet-
ric distortion, resulting in undesirable bleeding artifacts in
DIBR-synthesized images [7]. One alternative is to employ
edge-adaptive transforms [8–10] and wavelets [11], but this
requires coding of object contours [12] as an additional over-
head.

In response, the authors in [13] argued that, since dispar-
ity information provided by a depth image is akin to motion
information in motion prediction during single-view video
coding, like motion vectors disparity information can be

coarsely represented but should be losslessly coded. Hence
they proposed a compact graph-based representation (GBR)
that losslessly encodes disparity information to displace en-
tire pixel patches from one or more reference view(s) to a
target view. Because GBR suffers no geometric errors stem-
ming from lossy coding, GBR can outperform conventional
depth image coding schemes at high rates [13].

In this paper, we propose a more compact graphical repre-
sentation called GBR-plus to code both disparity and color in-
formation of a neighboring target view given a reference view.
We focus on an interactive multiview streaming (IMVS) sce-
nario where a user can interactively request new view v ± 1,
having reconstructed view v as reference [14, 15]. Specifi-
cally, first we differentiate between disocclusion holes (oc-
cluded spatial regions in the reference view) and rounding
holes (insufficiently sampled regions in the reference view)
in the synthesized target view, so that the decoder can option-
ally complete rounding holes via signal interpolation without
coding overhead. Second, we use a compact graphical rep-
resentation to delimit disparity-shifted boundaries of objects
in the target view, which is coded losslessly and efficiently
as two binary images using JBIG [16]. Finally, color pix-
els in disocclusion holes are predicted using adjacent back-
ground pixels as predictors, and prediction residuals in a local
block are coded using Graph Fourier Transform (GFT) [17],
where the underlying graph can be constructed synchronously
at both encoder and decoder given the common disparity in-
formation described in GBR-plus. Experimental results show
that GBR-plus outperforms previous GBR, and has compara-
ble performance as HEVC at mid to high bitrates with lower
encoder complexity.

2. GBR OVERVIEW

Instead of lossily coding deth maps, [13] proposed GBR
to code graphically described disparity information loss-
lessly for subsequent view(s) given transmitted first view
as reference. It was demonstrated that at high rates, GBR
outperforms competing disparity representations due to its
compactness and lossless coding. We overview the opera-
tions in GBR next.

The aim of GBR is to first represent disparity information
graphically, and then losslessly code the chosen representa-
tion for accurate reconstruction at the decoder. For simplic-
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Fig. 1: Example of GBR representing disparity for view 2 given
view 1 as reference. Same color pixels correspond to the same ob-
ject. Numbers are disparities in pixel displacement.

ity, we assume here that viewpoint images are rectified, so
that the disparities of objects across two neighboring frames
are purely horizontal. Hence we can focus on describing dis-
parities for a given row i across two different views.

Specifically, a pixel row in an original view is divided into
patches, each containing pixels with the same disparity value.
Edges are then drawn from patch boundaries in the original
view to pixel locations in the target view that delimit the new
patch locations. As an example, in Fig. 1 there are three edges
that designate end locations of three patches in the target view.
There are new appearing pixels in the target view (shown in
yellow) that either: i) enter into the field of view due to view
change, or ii) newly appear in the target view between dis-
placed patches. Appearing pixels are coded separately. The
coding overhead of GBR is hence the coding of the graph that
indicates patch displacements, plus the coding of new pixels.

3. GBR-PLUS

We design a new graphical representation called GBR-plus—
an improvement over GBR in [13]—for IMVS [14, 15], where
a user interactively requests from a server data for a neigh-
boring camera view v ± 1 (called target view) having already
reconstructed camera view v (called reference view).

3.1. Overview of GBR-plus
First, GBR-plus describes disparities of objects (as opposed
to patches) across two frames, where by object we mean a
physical surface area that is visible from both views. This
means that the object can change (slightly) in size from one
view to another, due to rounding of per-pixel disparity values.
If an object has a width of N pixels in reference view and M
pixels in the target view where N < M , then there is a N -to-
M pixel mapping from reference to target view. We propose
an interpolation method to perform this mapping (to be dis-
cussed in Section 3.3). In contrast, GBR maps N pixels to N
grid locations in the target view, leaving M −N empty loca-
tions, whose pixels are explicitly coded. Unlike disocclusion,
because these M −N missing pixels (called rounding holes)
are from the same object surface, they often can be interpo-
lated with sufficiently high quality using neighboring pixels.
Thus our decoder-side N -to-M pixel mapping approach can
potentially achieve bit saving with little distortion penalty.

We illustrate the graphical representation of disparity in
GBR-plus in the example shown in Fig. 2. We see that the left
and right boundaries of object two, vL(2) and vR(2) in the
reference view are mapped to boundaries uL(2) and uR(2)
in the target view, and the object’s width has changed from 8
to 9 pixels. The decoder can perform this 8-to-9 pixel map-
ping using our proposed interpolation method. In contrast,
as shown in Fig. 1 GBR would treat the same surface area as
two patches (each of the same disparity value), and the one
missing pixel is coded explicitly.

Fig. 2: Example of GBR-plus connecting object boundaries be-
tween the reference view (view 1) and the target view (view 2).

Second, disparities are represented as edges connecting
object boundaries in the reference view to boundaries in the
target view. Because the edges never cross from reference to
target view, i.e., the order of left / right boundaries of objects
are the same in both views, we can represent the start and end
points of edges as two binary images coded using JBIG [16].

Finally, to efficiently code pixels in disocclusion holes
(spatial areas in target view that are occluded by foreground
objects in the reference view) in the target view, we first per-
form intra-prediction using neighboring background pixels
as predictor to lower the signal energy. We then construct
a graph to connect disocclusion hole pixels and compute a
graph Fourier transform (GFT) [17] for coding of the predic-
tion residuals. We describe the details in these steps next.

3.2. Intra-Prediction and Coding of Disocclusion Pixels

Fig. 3: Block diagram of the encoder. At the decoder the inverse
operations are executed in the reverse order.

In contrast to disparity, color pixels in disocclusion holes
can and should be lossily coded to achieve a good RD trade-
off. To reduce their signal energy, we first perform row-by-
row intra-prediction as follows. For a given disocclusion pixel
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yi, denote the closest left and right available mapped color
pixels in the same row in the target image as xL and xR. Be-
tween xL and xR, the pixel xi with the smaller disparity value
is denoted as the background pixel predictor. The prediction
residual is then computed as zi = xi − yi.

To code prediction residuals of the disocclusion pixels,
we use Graph Fourier Transform (GFT) [17] so that correla-
tions among neighboring disocclusion pixels are maximally
exploited during transform coding for compression gain. We
first construct a graph to connect disocclusion pixels as fol-
lows. For each K ×K pixel block in the target view image,
we connect each disocclusion pixel with its four closest disoc-
clusion pixel neighbors within a neighborhood circle of radius
r. The radius r is chosen large enough so that the likelihood
of disconnected pixel patches or individual isolated pixels is
small. On the other hand, too large an r will result in con-
necting pixels that are not correlated in the first place. An
example is shown in Fig. 4, where 13 disocclusion pixels are
connected to form a graph.

Next, we compute weight wi,j for each edge connecting
pixel i and j, where wi,j is an exponential term of the Eu-
clidean square of the inter-pixel distance:

wi,j = exp

(
−‖pi − pj‖

2

σ2
I

)
(1)

where pi is the 2D coordinate of pixel xi, and σI is a scaling
parameter.

Given edge weights wi,j , we define the adjacency matrix
A, where Ai,j = wi,j , and the diagonal degree matrix D,
where Di,i =

∑
j Ai,j . Finally, the graph Laplacian matrix

L is defined as L = D − A [17]. Rows of GFT Φ are the
eigen-vectors of L. We thus project prediction residual z onto
the GFT basis, i.e. Z = Φz, then the GFT coefficients Z are
quantized and entropy-coded for transmission to the decoder.

Because the decoder, having received the graphical rep-
resentation of the disparity information, can deduce the exact
same locations of disocclusion pixels as the encoder, for each
K ×K block it can also construct the same graph connecting
the disocclusion pixels, compute the edge weights and derive
the same GFT. Thus there is no need to explicitly transmit ex-
tra side information to inform the decoder the GFT used for
each block, as done in [10].

3.3. N -to-M Pixel Mapping at the Decoder

To perform the N -to-M pixel mapping for the same ob-
ject, we propose the following interpolation method called
graphInter1. The idea is to interpolate a new set of
evenly spaced M pixels in the target view given available
evenly spaced N pixels in the reference view. Specifically,
we first construct a graph ofN nodes, where each node pair is
separated by a distance 1/(N − 1), representing the N pixels

1A simpler version of the proposed method for N -to-M pixel mapping is
presented in [18], which focused on interpolation but not coding.

Fig. 4: Graph construction of the color pixels in image Plastic,
where only the prediction residuals have to be coded.

Fig. 5: Example of interpolation from 4 pixels to 5 pixels.

in the reference view. Then we construct in addition M − 2
nodes, where together with the first and last reference nodes
represent the M new pixels in the target view. A node pair in
these M nodes are at distance 1/(M − 1) apart. Fig. 5 shows
an example of 4-to-5 pixel mapping.

We next connect the each reference node to its neighbor-
ing reference nodes, and also to the two closest target nodes as
well. Similar connectivity is performed for the target nodes.
We compute the edge weights according to (1) based on Eu-
clidean distance. As done previously, from the computed
weights we can derive the adjacency matrix A, the degree
matrix D, and the graph Laplacian L. If the reconstructed
signal x is smooth with respect to the graph on which it lives,
then a graph Laplacian regularizer xTLx tends to be small
[19]. Denote by y the N reference pixels, by x the M +
N − 2 pixels from reference and target views, and by H the
N×(M+N−2) matrix that selectsN reference pixels from
vector x. We can thus perform the N -to-M pixel mapping
via the following optimization:

min
x
‖y −Hx‖22 + λxTLx (2)
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where the first term is a fidelity term that ensures the recon-
structed signal is close to the observed N reference pixels,
and the second term is a graph-signal smoothness prior [19].
The optimization (2) is solved iteratively, where in subsequent
iterations the edge weight is updated using product of expo-
nentials of Euclidean distance and of difference in pixel inten-
sity computed in the previous iteration. See [19] for details.

3.4. Mode Selection in GBR-plus
Given the coding and interpolation tools discussed above in
GBR-plus, coding modes can actually be selected in an RD
optimal way so that the optimal combination of tools are used
for each block. Specifically, inside a given K ×K block, the
disparity of the objects can be coded using GBR-plus graphi-
cal representation and N -to-M pixel mapping performed at
the decoder—this is mode 1. If our proposed method de-
scribed in Section 3.3 results in poor interpolation quality,
then the objects can be sub-divided and redefined as smaller
objects, each with pixels of the same disparity value (similar
to patches in GBR). Then there is a pixel-to-pixel mapping
from reference to target view, and the prediction residuals
of the appearing pixels can be explicitly coded, resulting in
higher quality—this is mode 2. Finally, instead of explicit
coding of the appearing pixels, each appearing pixel between
patches can be computed as the local average of the nearest
mapped reference pixels to the left and right; this is the con-
ventional pixel interpolation method used in DIBR for round-
ing holes [2]. This is mode 3. At the encoder, we select the
optimal mode for each block based on an RD criteria, similar
to mode selection in video coding standards [20].

4. EXPERIMENTS

To demonstrate the coding performance of our proposed
GBR-plus, we conducted the following experiments. As
input we used three multiview sequences Baby, Cloth2,
Cloth3 from the Middlebury database2. We coded the first
reference view using JPEG with a sufficiently high Quality
factor to ensure a PSNR of 45dB. We measured the RD per-
formance of the color and depth maps for the subsequently
requested second target view. To induce different tradeoff
points, we varied the QP for the coding of disocclusion pixels
using GFT. PSNR is computed from the difference between
the reconstructed second view and the camera-captured view.

We compare GBR-plus to three competing schemes. GBR
is an implementation of [13] for coding of color map and dis-
parity information, where all hole pixels are explicitly coded
using our proposed GFT with no interpolation performed at
the decoder. We also employed H.264 and HEVC to code
color and depth maps of the second target view at the same
QP using the first coded view as reference.

The resulting plots of image quality in PSNR versus cod-
ing rates are shown in Fig. 6(b), 7(a) and 7(b) for the three test

2http://vision.middlebury.edu/stereo/data/scenes2006/

(a) (b)
Fig. 6: Captured first view (a) and comparison of coding per-
formance (PSNR vs. coding rate) (b) for Baby.

(a) (b)
Fig. 7: Comparison of coding performance (PSNR vs. coding
rate) for Cloth2 (a) and Cloth3 (b).

sequences. We first observe that GBR-plus outpeforms GBR
noticeably for all three sequences (up to 2.6dB gain), thanks
to a combination of a more compact graphical representation,
intra-prediction and GFT coding of prediction residuals, and
interpolation of rounding holes at the decoder. We also see
that for Cloth2 and Cloth3, GBR-plus outperforms H.264
for the whole bitrate range and outperforms HEVC at mid to
high bitrates, while for Baby GBR-plus is competitive at mid
bitrates but in general worse than HEVC. The reason is be-
cause the background in Baby contains complex texture (as
shown in Fig.6(a)) that cannot be easily interpolated, limiting
the benefit of our proposed decoder-side interpolation. On the
other hand, unlike HEVC, for each code block GBR-plus has
much fewer number of coding modes to choose from, result-
ing in a lower encoder complexity.

5. CONCLUSION

Given a reconstructed reference view at the decoder, we pro-
pose a new representation GBR-plus to first compactly rep-
resent disparity of objects in a target view as a graph. The
graph can be efficiently coded as two binary images coded us-
ing JBIG. Disocclusion color pixels in the target view are first
predicted using neighboring background pixels, and predic-
tion residuals are coded using graph Fourier transform (GFT).
Color pixels of objects that change in size in the target view
can be interpolated with the help of a graph-signal smooth-
ness prior. Experimental results show significant coding gain
over a previous representation GBR, and comparable coding
performance with HEVC for three multiview sequences.
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